Nuprl Lemma : qv-constrained-sup_wf

[n:ℕ]. ∀[S,lfs:q-linear-form(n) List]. ∀[p:ℚ^n]. ∀[r:ℚ].  qv-constrained-sup(n;S;lfs;p;r) ∈ ℙ supposing 0 < ||lfs||


Proof




Definitions occuring in Statement :  qv-constrained-sup: qv-constrained-sup(n;S;lfs;p;r) q-linear-form: q-linear-form(n) qvn: ^n rationals: length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qv-constrained-sup: qv-constrained-sup(n;S;lfs;p;r) so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf qv-constrained_wf equal_wf rationals_wf qlfs-min-val_wf all_wf qvn_wf qle_wf less_than_wf length_wf q-linear-form_wf list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination lambdaEquality functionEquality axiomEquality equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality because_Cache

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[S,lfs:q-linear-form(n)  List].  \mforall{}[p:\mBbbQ{}\^{}n].  \mforall{}[r:\mBbbQ{}].
    qv-constrained-sup(n;S;lfs;p;r)  \mmember{}  \mBbbP{}  supposing  0  <  ||lfs||



Date html generated: 2016_05_15-PM-11_23_29
Last ObjectModification: 2015_12_27-PM-07_31_16

Theory : rationals


Home Index