Nuprl Lemma : op-functor_wf
∀[C,D:SmallCategory]. ∀[F:Functor(C;D)].  (op-functor(F) ∈ Functor(op-cat(C);op-cat(D)))
Proof
Definitions occuring in Statement : 
op-functor: op-functor(F), 
op-cat: op-cat(C), 
cat-functor: Functor(C1;C2), 
small-category: SmallCategory, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
op-functor: op-functor(F), 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
so_apply: x[s], 
so_lambda: so_lambda3, 
top: Top, 
so_apply: x[s1;s2;s3], 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q
Lemmas referenced : 
mk-functor_wf, 
op-cat_wf, 
cat_ob_op_lemma, 
functor-ob_wf, 
subtype_rel-equal, 
cat-ob_wf, 
op-cat-arrow, 
functor-arrow_wf, 
cat-arrow_wf, 
cat-functor_wf, 
small-category_wf, 
equal_wf, 
squash_wf, 
true_wf, 
functor-arrow-comp, 
cat-comp_wf, 
iff_weakening_equal, 
functor-arrow-id, 
cat-id_wf, 
op-cat-comp, 
op-cat-id
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
applyEquality, 
independent_isectElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    (op-functor(F)  \mmember{}  Functor(op-cat(C);op-cat(D)))
 Date html generated: 
2020_05_20-AM-07_52_20
 Last ObjectModification: 
2017_10_05-AM-11_32_49
Theory : small!categories
Home
Index