Nuprl Lemma : op-functor_wf

[C,D:SmallCategory]. ∀[F:Functor(C;D)].  (op-functor(F) ∈ Functor(op-cat(C);op-cat(D)))


Proof




Definitions occuring in Statement :  op-functor: op-functor(F) op-cat: op-cat(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T op-functor: op-functor(F) so_lambda: λ2x.t[x] all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] so_lambda: so_lambda3 top: Top so_apply: x[s1;s2;s3] squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  mk-functor_wf op-cat_wf cat_ob_op_lemma functor-ob_wf subtype_rel-equal cat-ob_wf op-cat-arrow functor-arrow_wf cat-arrow_wf cat-functor_wf small-category_wf equal_wf squash_wf true_wf functor-arrow-comp cat-comp_wf iff_weakening_equal functor-arrow-id cat-id_wf op-cat-comp op-cat-id
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule lambdaEquality dependent_functionElimination applyEquality independent_isectElimination because_Cache isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F:Functor(C;D)].    (op-functor(F)  \mmember{}  Functor(op-cat(C);op-cat(D)))



Date html generated: 2020_05_20-AM-07_52_20
Last ObjectModification: 2017_10_05-AM-11_32_49

Theory : small!categories


Home Index