Nuprl Lemma : cubical-id-box_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[a,b:{X ⊢ _:A}]. ∀[I:Cname List]. ∀[J:nameset(I) List]. ∀[x:nameset(I)]. ∀[i:ℕ2].
∀[alpha:X(I)]. ∀[box:A-open-box(X;(Id_A a b);I;alpha;J;x;i)].
  (cubical-id-box(X;A;a;b;I;alpha;box) ∈ A-open-box(X;A;[fresh-cname(I) / 
                                                         I];iota(fresh-cname(I))(alpha);[fresh-cname(I) / J];x;i))
Proof
Definitions occuring in Statement : 
cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box), 
cubical-identity: (Id_A a b), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
cubical-term: {X ⊢ _:AF}, 
cubical-type: {X ⊢ _}, 
cube-set-restriction: f(s), 
I-cube: X(I), 
cubical-set: CubicalSet, 
iota: iota(x), 
fresh-cname: fresh-cname(I), 
nameset: nameset(L), 
coordinate_name: Cname, 
cons: [a / b], 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-id-box: cubical-id-box(X;A;a;b;I;alpha;box), 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nameset: nameset(L), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
coordinate_name: Cname, 
int_upper: {i...}, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
prop: ℙ, 
false: False, 
l_member: (x ∈ l), 
nat: ℕ, 
less_than': less_than'(a;b), 
top: Top, 
select: L[n], 
cons: [a / b], 
cand: A c∧ B, 
nat_plus: ℕ+, 
guard: {T}, 
uiff: uiff(P;Q), 
sq_stable: SqStable(P), 
ge: i ≥ j , 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
A-face-name: A-face-name(f), 
term-A-face: term-A-face(a;I;alpha;i), 
pi1: fst(t), 
pi2: snd(t), 
l_all: (∀x∈L.P[x]), 
lift-id-faces: lift-id-faces(X;A;I;alpha;box), 
A-open-box: A-open-box(X;A;I;alpha;J;x;i), 
A-face: A-face(X;A;I;alpha), 
lift-id-face: lift-id-face(X;A;I;alpha;face), 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2), 
spreadn: spread3, 
iff: P ⇐⇒ Q, 
I-path: I-path(X;A;a;b;I;alpha), 
named-path: named-path(X;A;a;b;I;alpha;z), 
name-path-endpoints: name-path-endpoints(X;A;a;b;I;alpha;z;omega), 
true: True, 
rev_implies: P ⇐ Q, 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
iota': iota'(I), 
cubical-term-at: u(a)
Lemmas referenced : 
extend-A-open-box_wf, 
cons_wf, 
coordinate_name_wf, 
fresh-cname_wf, 
cube-set-restriction_wf, 
iota_wf, 
subtype_rel_list, 
nameset_wf, 
nameset_subtype, 
l_subset_right_cons_trivial, 
lift-id-faces_wf, 
term-A-face_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
istype-void, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
nat_plus_properties, 
add-is-int-iff, 
intformand_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
false_wf, 
length_wf, 
select_wf, 
nat_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
l_member_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
fresh-cname-not-equal2, 
A-open-box_wf, 
cubical-identity_wf, 
I-cube_wf, 
int_seg_wf, 
list_wf, 
cubical-term_wf, 
cubical-type_wf, 
cubical-set_wf, 
length-map, 
A-face_wf, 
top_wf, 
sq_stable__not, 
set-path-name_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
face-map_wf2, 
subtype_rel_sets_simple, 
not_wf, 
member-list-diff, 
le_wf, 
lelt_wf, 
select-map, 
member_singleton, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
list-diff-cons, 
subtype_rel_self, 
iff_weakening_equal, 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
bor_wf, 
bfalse_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
deq-member_wf, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
list-diff2, 
deq_wf, 
list-diff-disjoint, 
l_disjoint_singleton, 
cons_member, 
iota'-identity, 
cube-set-restriction-comp, 
subtype_rel-equal, 
add-remove-fresh-sq, 
cube-set-restriction-id, 
name-comp_wf, 
list_subtype_base, 
face-map_wf, 
name-morph_wf, 
face-maps-commute, 
cubical-type-at_wf, 
cubical-type-ap-morph_wf, 
iota-face-map, 
name-morph_subtype, 
l_subset_wf, 
l_subset_refl, 
cubical-type-ap-morph-comp, 
cubical-term-at-morph, 
subtype_rel_weakening, 
ext-eq_weakening, 
cubical-term-at_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality_alt, 
productElimination, 
imageElimination, 
independent_pairFormation, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
Error :memTop, 
universeIsType, 
voidElimination, 
productIsType, 
lambdaFormation_alt, 
isect_memberEquality_alt, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
int_eqEquality, 
equalityIstype, 
imageMemberEquality, 
instantiate, 
cumulativity, 
independent_pairEquality, 
axiomEquality, 
isectIsTypeImplies, 
functionIsType, 
intEquality, 
equalityIsType1, 
setEquality, 
equalityIsType4, 
hyp_replacement, 
equalityIsType3, 
universeEquality, 
equalityElimination, 
inlFormation_alt
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[a,b:\{X  \mvdash{}  \_:A\}].  \mforall{}[I:Cname  List].  \mforall{}[J:nameset(I)  List].
\mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].  \mforall{}[alpha:X(I)].  \mforall{}[box:A-open-box(X;(Id\_A  a  b);I;alpha;J;x;i)].
    (cubical-id-box(X;A;a;b;I;alpha;box)
      \mmember{}  A-open-box(X;A;[fresh-cname(I)  /  I];iota(fresh-cname(I))(alpha);[fresh-cname(I)  /  J];x;i))
Date html generated:
2020_05_21-AM-11_13_14
Last ObjectModification:
2019_12_08-PM-07_04_17
Theory : cubical!sets
Home
Index