Nuprl Lemma : comp-to-fill_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:composition-function{j:l,i:l}(Gamma;A)].
  (comp-to-fill(Gamma;cA) ∈ filling-function{j:l, i:l}(Gamma;A))
Proof
Definitions occuring in Statement : 
comp-to-fill: comp-to-fill(Gamma;cA), 
filling-function: filling-function{j:l, i:l}(Gamma;A), 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
cubical-type: {X ⊢ _}, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
composition-function: composition-function{j:l,i:l}(Gamma;A), 
comp-to-fill: comp-to-fill(Gamma;cA), 
filling-function: filling-function{j:l, i:l}(Gamma;A), 
guard: {T}, 
uimplies: b supposing a, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
subtype_rel: A ⊆r B, 
constant-cubical-type: (X), 
csm-ap-type: (AF)s, 
cc-fst: p, 
interval-type: 𝕀, 
cc-snd: q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
true: True, 
prop: ℙ, 
squash: ↓T, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
same-cubical-type: Gamma ⊢ A = B, 
partial-term-0: u[0], 
csm-ap: (s)x, 
csm-adjoin: (s;u), 
csm-id: 1(X), 
compose: f o g, 
cc-adjoin-cube: (v;u), 
csm-comp: G o F, 
csm-m: m, 
csm-id-adjoin: [u], 
interval-0: 0(𝕀), 
cat-comp: cat-comp(C), 
names-hom: I ⟶ J, 
type-cat: TypeCat, 
pi2: snd(t), 
cat-arrow: cat-arrow(C), 
quotient: x,y:A//B[x; y], 
fset: fset(T), 
cube-cat: CubeCat, 
spreadn: spread4, 
op-cat: op-cat(C), 
pi1: fst(t), 
cat-ob: cat-ob(C), 
nat-trans: nat-trans(C;D;F;G), 
psc_map: A ⟶ B, 
cube_set_map: A ⟶ B, 
same-cubical-term: X ⊢ u=v:A, 
context-subset: Gamma, phi, 
csm-ap-term: (t)s, 
cubical-term-at: u(a), 
case-term: (u ∨ v), 
cube-context-adjoin: X.A, 
face-zero: (i=0), 
not: ¬A, 
false: False, 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
or: P ∨ Q, 
exists: ∃x:A. B[x], 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
bdd-distributive-lattice: BoundedDistributiveLattice, 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
btrue: tt, 
bfalse: ff, 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
record-update: r[x := v], 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
face-lattice: face-lattice(T;eq), 
face_lattice: face_lattice(I), 
record-select: r.x, 
lattice-point: Point(l), 
face-presheaf: 𝔽, 
functor-ob: ob(F), 
I_cube: A(I), 
face-type: 𝔽, 
cubical-type-at: A(a), 
cubical-type: {X ⊢ _}, 
dM0: 0, 
interval-presheaf: 𝕀, 
free-dist-lattice: free-dist-lattice(T; eq), 
free-DeMorgan-lattice: free-DeMorgan-lattice(T;eq), 
mk-DeMorgan-algebra: mk-DeMorgan-algebra(L;n), 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq), 
dM: dM(I), 
DeMorgan-algebra: DeMorganAlgebra, 
interval-1: 1(𝕀), 
dM1: 1
Lemmas referenced : 
cc-fst_wf_interval, 
csm-m_wf, 
csm-ap-term_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
face-type_wf, 
csm-face-type, 
context-subset_wf, 
thin-context-subset, 
csm-ap-type_wf, 
context-subset-map, 
csm-id-adjoin_wf, 
interval-0_wf, 
partial-term-0_wf, 
constrained-cubical-term-eqcd, 
cubical-term-eqcd, 
cube_set_map_wf, 
cubical_set_wf, 
composition-function_wf, 
cubical-type_wf, 
csm-id-adjoin_wf-interval-0, 
cubical_set_cumulativity-i-j, 
cc-fst_wf, 
cc-snd_wf, 
face-zero_wf, 
sub_cubical_set_self, 
subset-cubical-term, 
context-subset-is-subset, 
true_wf, 
squash_wf, 
cubical-term_wf, 
csm-comp-type, 
cubical-type-cumulativity2, 
0-comp-cc-fst-comp-m, 
interval-1_wf, 
iff_weakening_equal, 
subtype_rel_self, 
csm-ap-id-type, 
istype-universe, 
equal_wf, 
csm-m-comp-1, 
csm-comp-term, 
csm-comp_wf, 
face-and_wf, 
csm-ap-term-wf-subset, 
face-term-and-implies1, 
face-term-and-implies2, 
face-term-implies-subset, 
sub_cubical_set-cumulativity1, 
csm-subset-domain, 
csm-context-subset-subtype2, 
context-iterated-subset, 
case-term_wf, 
face-or_wf, 
csm-face-or, 
cc-fst-comp-csm-m-term, 
context-adjoin-subset4, 
subset-cubical-term2, 
csm-m-comp-0, 
nat_wf, 
fset_wf, 
I_cube_wf, 
I_cube_pair_redex_lemma, 
face-or-eq-1, 
assert_wf, 
iff_weakening_uiff, 
assert-bnot, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
lattice-join_wf, 
lattice-meet_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
lattice-axioms_wf, 
lattice-structure_wf, 
bounded-lattice-structure_wf, 
subtype_rel_set, 
assert-fl-eq, 
eqtt_to_assert, 
lattice-1_wf, 
face_lattice_wf, 
lattice-point_wf, 
cubical-term-at_wf, 
fl-eq_wf, 
cubical_type_at_pair_lemma, 
cubical-type-at_wf, 
istype-cubical-type-at, 
bdd-lattice_wf, 
bdd-distributive-lattice_wf, 
DeMorgan-algebra_wf, 
subtype_rel_transitivity, 
DeMorgan-algebra-subtype, 
bdd-distributive-lattice-subtype-bdd-lattice, 
dM_wf, 
lattice-0-meet, 
interval-type-at, 
csm-ap-term-at, 
dM0_wf, 
DeMorgan-algebra-axioms_wf, 
DeMorgan-algebra-structure-subtype, 
DeMorgan-algebra-structure_wf, 
cc-adjoin-cube_wf, 
cubical-term-equal, 
csm-comp-assoc, 
csm-ap-id-term, 
face-term-implies-or1, 
equal_functionality_wrt_subtype_rel2, 
subset-cubical-type, 
lattice-meet-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
functionExtensionality, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
Error :memTop, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
rename, 
setElimination, 
because_Cache, 
applyEquality, 
independent_functionElimination, 
dependent_functionElimination, 
equalityIstype, 
lambdaFormation_alt, 
hyp_replacement, 
lambdaEquality_alt, 
baseClosed, 
imageMemberEquality, 
natural_numberEquality, 
imageElimination, 
applyLambdaEquality, 
productElimination, 
universeEquality, 
productIsType, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
sqequalBase, 
cumulativity, 
voidElimination, 
promote_hyp, 
dependent_pairFormation_alt, 
isectEquality, 
productEquality, 
equalityElimination, 
unionElimination, 
dependent_pairEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:composition-function\{j:l,i:l\}(Gamma;A)].
    (comp-to-fill(Gamma;cA)  \mmember{}  filling-function\{j:l,  i:l\}(Gamma;A))
Date html generated:
2020_05_20-PM-04_45_16
Last ObjectModification:
2020_05_02-AM-10_47_16
Theory : cubical!type!theory
Home
Index