Nuprl Lemma : real-unit-ball-totally-bounded

n:ℕ. ∀k:ℕ+.  (∃L:{p:B(n)| rational-vec(n;p)}  List [(∀p:B(n). ∃i:ℕ||L||. (d(p;L[i]) ≤ (r1/r(k))))])


Proof




Definitions occuring in Statement :  real-unit-ball: B(n) rational-vec: rational-vec(n;x) real-vec-dist: d(x;y) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat_plus: + nat: all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T unit-ball-approx: unit-ball-approx(n;k) uall: [x:A]. B[x] nat: nat_plus: + int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q less_than: a < b squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: iff: ⇐⇒ Q sq_exists: x:A [B[x]] real-unit-ball: B(n) le: A ≤ B rneq: x ≠ y guard: {T} rev_implies:  Q sq_type: SQType(T) ext-eq: A ≡ B rational-vec: rational-vec(n;x) less_than': less_than'(a;b) approx-ball-to-ball: approx-ball-to-ball(k;p) int_nzero: -o nequal: a ≠ b ∈  l_member: (x ∈ l) cand: c∧ B real-vec-dist: d(x;y) real-vec-norm: ||x|| dot-product: x⋅y subtract: m true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  real-unit-ball-totally-bounded1 finite-decidable-subset int_seg_wf le_wf sum_wf finite-function nsub_finite int_seg_finite decidable__squash decidable__le finite-iff-listable unit-ball-approx_wf multiply_nat_wf nat_plus_properties nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le itermMultiply_wf int_term_value_mul_lemma nat_plus_wf istype-nat map_wf nat_plus_subtype_nat real-unit-ball_wf rational-vec_wf length_wf rleq_wf real-vec-dist_wf select_wf int_seg_properties decidable__lt rdiv_wf int-to-real_wf rless-int rless_wf decidable__equal_int subtype_base_sq int_subtype_base real-unit-ball-0 approx-ball-to-ball_wf mul_nat_plus istype-less_than intformeq_wf int_formula_prop_eq_lemma int-rdiv-req int_entire_a nequal_wf req_wf int-rdiv_wf rneq-int length-map select-map subtype_rel_list top_wf rsum-empty squash_wf true_wf real_wf real-vec_wf subtype_rel_self iff_weakening_equal rsqrt_wf rleq_weakening_equal rleq-int-fractions2 rleq_functionality rsqrt0 req_weakening
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality functionEquality isectElimination natural_numberEquality setElimination rename minusEquality multiplyEquality productElimination imageElimination addEquality because_Cache sqequalRule lambdaEquality_alt applyEquality inhabitedIsType equalityTransitivity equalitySymmetry universeIsType functionIsType independent_functionElimination dependent_set_memberEquality_alt unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation dependent_set_memberFormation_alt setEquality productIsType closedConclusion inrFormation_alt instantiate cumulativity intEquality equalityIstype baseClosed sqequalBase baseApply imageMemberEquality setIsType universeEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}k:\mBbbN{}\msupplus{}.    (\mexists{}L:\{p:B(n)|  rational-vec(n;p)\}    List  [(\mforall{}p:B(n).  \mexists{}i:\mBbbN{}||L||.  (d(p;L[i])  \mleq{}  (r1/r(k))))])



Date html generated: 2019_10_30-AM-11_29_00
Last ObjectModification: 2019_06_28-PM-01_56_28

Theory : real!vectors


Home Index