Nuprl Lemma : real-unit-ball-totally-bounded
∀n:ℕ. ∀k:ℕ+.  (∃L:{p:B(n)| rational-vec(n;p)}  List [(∀p:B(n). ∃i:ℕ||L||. (d(p;L[i]) ≤ (r1/r(k))))])
Proof
Definitions occuring in Statement : 
real-unit-ball: B(n)
, 
rational-vec: rational-vec(n;x)
, 
real-vec-dist: d(x;y)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
int-to-real: r(n)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat_plus: ℕ+
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
exists: ∃x:A. B[x]
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
unit-ball-approx: unit-ball-approx(n;k)
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
less_than: a < b
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
sq_exists: ∃x:A [B[x]]
, 
real-unit-ball: B(n)
, 
le: A ≤ B
, 
rneq: x ≠ y
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
ext-eq: A ≡ B
, 
rational-vec: rational-vec(n;x)
, 
less_than': less_than'(a;b)
, 
approx-ball-to-ball: approx-ball-to-ball(k;p)
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
l_member: (x ∈ l)
, 
cand: A c∧ B
, 
real-vec-dist: d(x;y)
, 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
subtract: n - m
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real-unit-ball-totally-bounded1, 
finite-decidable-subset, 
int_seg_wf, 
le_wf, 
sum_wf, 
finite-function, 
nsub_finite, 
int_seg_finite, 
decidable__squash, 
decidable__le, 
finite-iff-listable, 
unit-ball-approx_wf, 
multiply_nat_wf, 
nat_plus_properties, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
nat_plus_wf, 
istype-nat, 
map_wf, 
nat_plus_subtype_nat, 
real-unit-ball_wf, 
rational-vec_wf, 
length_wf, 
rleq_wf, 
real-vec-dist_wf, 
select_wf, 
int_seg_properties, 
decidable__lt, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
real-unit-ball-0, 
approx-ball-to-ball_wf, 
mul_nat_plus, 
istype-less_than, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int-rdiv-req, 
int_entire_a, 
nequal_wf, 
req_wf, 
int-rdiv_wf, 
rneq-int, 
length-map, 
select-map, 
subtype_rel_list, 
top_wf, 
rsum-empty, 
squash_wf, 
true_wf, 
real_wf, 
real-vec_wf, 
subtype_rel_self, 
iff_weakening_equal, 
rsqrt_wf, 
rleq_weakening_equal, 
rleq-int-fractions2, 
rleq_functionality, 
rsqrt0, 
req_weakening
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
functionEquality, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
minusEquality, 
multiplyEquality, 
productElimination, 
imageElimination, 
addEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
functionIsType, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
dependent_set_memberFormation_alt, 
setEquality, 
productIsType, 
closedConclusion, 
inrFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
equalityIstype, 
baseClosed, 
sqequalBase, 
baseApply, 
imageMemberEquality, 
setIsType, 
universeEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}k:\mBbbN{}\msupplus{}.    (\mexists{}L:\{p:B(n)|  rational-vec(n;p)\}    List  [(\mforall{}p:B(n).  \mexists{}i:\mBbbN{}||L||.  (d(p;L[i])  \mleq{}  (r1/r(k))))])
Date html generated:
2019_10_30-AM-11_29_00
Last ObjectModification:
2019_06_28-PM-01_56_28
Theory : real!vectors
Home
Index