Nuprl Lemma : real-unit-ball-totally-bounded1

n:ℕ. ∀k:ℕ+. ∀p:B(n).  ∃q:unit-ball-approx(n;k n). (d(p;approx-ball-to-ball(k n;q)) ≤ (r1/r(k)))


Proof




Definitions occuring in Statement :  approx-ball-to-ball: approx-ball-to-ball(k;p) unit-ball-approx: unit-ball-approx(n;k) real-unit-ball: B(n) real-vec-dist: d(x;y) rdiv: (x/y) rleq: x ≤ y int-to-real: r(n) nat_plus: + nat: all: x:A. B[x] exists: x:A. B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q uall: [x:A]. B[x] uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} nat_plus: + ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: ext-eq: A ≡ B subtype_rel: A ⊆B squash: T le: A ≤ B less_than': less_than'(a;b) label: ...$L... t real-unit-ball: B(n) true: True iff: ⇐⇒ Q rev_implies:  Q real-vec-dist: d(x;y) real-vec-norm: ||x|| dot-product: x⋅y subtract: m so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b rneq: x ≠ y uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k cand: c∧ B nequal: a ≠ b ∈  unit-ball-approx: unit-ball-approx(n;k) pi1: fst(t) rge: x ≥ y rdiv: (x/y) req_int_terms: t1 ≡ t2 bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b pointwise-rleq: x[k] ≤ y[k] for k ∈ [n,m] rless: x < y sq_exists: x:A [B[x]] approx-ball-to-ball: approx-ball-to-ball(k;p) rleq: x ≤ y rnonneg: rnonneg(x) rat_term_to_real: rat_term_to_real(f;t) rtermDivide: num "/" denom rat_term_ind: rat_term_ind rtermConstant: "const" rtermMultiply: left "*" right rtermVar: rtermVar(var) pi2: snd(t) sq_stable: SqStable(P)
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base real-unit-ball_wf nat_plus_wf istype-nat unit-ball-approx0 multiply_nat_wf nat_plus_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le itermMultiply_wf intformeq_wf int_term_value_mul_lemma int_formula_prop_eq_lemma subtype_rel_wf squash_wf true_wf istype-universe top_wf unit-ball-approx_wf iff_weakening_equal rsum-empty rleq_wf rsqrt_wf rleq_weakening_equal int-to-real_wf rdiv_wf rless-int decidable__lt rless_wf rleq-int-fractions2 rleq_functionality rsqrt0 req_weakening istype-less_than set_subtype_base less_than_wf rational-inner-approx-int mul_nat_plus int_seg_properties mul-swap mul-associates rabs_wf rneq-int int_entire_a rsub_wf int_seg_wf sum_wf real-vec-dist_wf approx-ball-to-ball_wf mul_bounds_1b rleq_functionality_wrt_implies real-vec-norm_wf square-rleq-implies real-vec-norm-nonneg nat_plus_subtype_nat rnexp_wf dot-product_wf real-vec-norm-squared real_wf rmul_wf rnexp2-nonneg req_functionality req_inversion rnexp2 rabs-rnexp rabs-of-nonneg rsum_wf subtract_wf itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma rsum_functionality2 item-rleq-rsum-of-nonneg subtract-add-cancel rabs-int subtype_rel_self absval_pos nat_wf le_wf absval-non-neg absval_wf iff_weakening_uiff req_transitivity rabs-rdiv rneq_wf rmul_preserves_rleq2 rleq_weakening_rless rinv_wf2 rleq-int rmul_functionality rmul-rinv req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int istype-top itermMinus_wf int_term_value_minus_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot assert_wf rsum_int rsum_functionality_wrt_rleq rnexp_functionality_wrt_rleq zero-rleq-rabs rleq_weakening exp_wf2 exp-positive rless_functionality rnexp-int rnexp-rdiv rleq-implies-rleq rmul-int rsum_linearity2 dot-product-comm mul_bounds_1a rnexp-one implies-real-vec-dist-rleq int-rdiv_wf nat_plus_inc_int_nzero le_witness_for_triv rabs_functionality rsub_functionality int-rdiv-req mul_preserves_le rsqrt_squared rneq_functionality assert-rat-term-eq2 rtermDivide_wf rtermConstant_wf rtermMultiply_wf rtermVar_wf rdiv_functionality rmul_preserves_rleq sq_stable__rless rinv-of-rmul rinv-mul-as-rdiv rmul-neq-zero square-nonzero rmul-rinv3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination universeIsType dependent_set_memberEquality_alt approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation multiplyEquality productElimination applyEquality imageElimination equalityTransitivity equalitySymmetry inhabitedIsType universeEquality imageMemberEquality baseClosed minusEquality inrFormation_alt closedConclusion promote_hyp productIsType equalityIstype sqequalBase baseApply functionExtensionality functionIsType addEquality equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies applyLambdaEquality functionIsTypeImplies

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}p:B(n).
    \mexists{}q:unit-ball-approx(n;k  *  8  *  n).  (d(p;approx-ball-to-ball(k  *  8  *  n;q))  \mleq{}  (r1/r(k)))



Date html generated: 2019_10_30-AM-11_28_55
Last ObjectModification: 2019_06_28-PM-01_56_25

Theory : real!vectors


Home Index