Nuprl Lemma : Taylor-theorem-for-2
∀I:Interval
  (iproper(I)
  
⇒ (∀f,g,h:I ⟶ℝ.
        ((∀x,y:{a:ℝ| a ∈ I} .  ((x = y) 
⇒ (h[x] = h[y])))
        
⇒ d(f[x])/dx = λx.g[x] on I
        
⇒ d(g[x])/dx = λx.h[x] on I
        
⇒ (∀a,b:{a:ℝ| a ∈ I} . ∀e:ℝ.
              ((r0 < e)
              
⇒ (∃c:ℝ
                   ((rmin(a;b) ≤ c)
                   ∧ (c ≤ rmax(a;b))
                   ∧ (|f[b] - f[a] + (g[a] * (b - a)) - ((b - c) * h[c]) * (b - a)| ≤ e))))))))
Proof
Definitions occuring in Statement : 
derivative: d(f[x])/dx = λz.g[z] on I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
iproper: iproper(I)
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rmin: rmin(x;y)
, 
rmax: rmax(x;y)
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
so_lambda: λ2x y.t[x; y]
, 
rfun: I ⟶ℝ
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
sq_stable: SqStable(P)
, 
so_apply: x[s1;s2]
, 
finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x])
, 
sq_type: SQType(T)
, 
guard: {T}
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
so_lambda: λ2x.t[x]
, 
label: ...$L... t
, 
Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x])
, 
Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x])
, 
less_than': less_than'(a;b)
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
uiff: uiff(P;Q)
, 
bnot: ¬bb
, 
assert: ↑b
, 
eq_int: (i =z j)
, 
fact: (n)!
, 
primrec: primrec(n;b;c)
, 
primtailrec: primtailrec(n;i;b;f)
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
, 
lt_int: i <z j
, 
length: ||as||
, 
list_ind: list_ind, 
nil: []
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermVar: rtermVar(var)
, 
rat_term_ind: rat_term_ind, 
pi1: fst(t)
, 
rtermMultiply: left "*" right
, 
rtermDivide: num "/" denom
, 
rtermConstant: "const"
, 
pi2: snd(t)
, 
cand: A c∧ B
, 
subinterval: I ⊆ J 
, 
nequal: a ≠ b ∈ T 
, 
i-member: r ∈ I
, 
rccint: [l, u]
Lemmas referenced : 
Taylor-theorem, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
select_wf, 
real_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
sq_stable__less_than, 
int-to-real_wf, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
length_of_cons_lemma, 
length_of_nil_lemma, 
itermAdd_wf, 
int_term_value_add_lemma, 
int_seg_wf, 
req_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_subtype_special, 
int_seg_cases, 
rless_wf, 
derivative_wf, 
i-member_wf, 
rfun_wf, 
iproper_wf, 
interval_wf, 
differentiable-functional2, 
rsum_wf, 
rmul_wf, 
rdiv_wf, 
fact_wf, 
int_seg_subtype_nat, 
istype-false, 
rless-int, 
istype-le, 
rnexp_wf, 
rsub_wf, 
lt_int_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
assert_of_lt_int, 
fact0_redex_lemma, 
rnexp_zero_lemma, 
radd_wf, 
req_functionality, 
rsum_unroll, 
req_weakening, 
radd_functionality, 
rsum_single, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf, 
rtermConstant_wf, 
nat_plus_wf, 
set_subtype_base, 
rmul_functionality, 
rnexp1, 
rleq_wf, 
rabs_wf, 
rmin-rmax-subinterval, 
sq_stable__i-member, 
rabs_functionality, 
member_rccint_lemma, 
rsub_functionality, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
req_inversion, 
rleq_transitivity, 
rleq_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
because_Cache, 
applyEquality, 
productElimination, 
imageElimination, 
addEquality, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
int_eqEquality, 
independent_pairFormation, 
instantiate, 
cumulativity, 
intEquality, 
hypothesis_subsumption, 
setIsType, 
functionIsType, 
closedConclusion, 
inrFormation_alt, 
applyLambdaEquality, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
productIsType, 
int_eqReduceTrueSq, 
int_eqReduceFalseSq
Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,g,h:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (h[x]  =  h[y])))
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
                {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.h[x]  on  I
                {}\mRightarrow{}  (\mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  \mforall{}e:\mBbbR{}.
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}
                                      ((rmin(a;b)  \mleq{}  c)
                                      \mwedge{}  (c  \mleq{}  rmax(a;b))
                                      \mwedge{}  (|f[b]  -  f[a]  +  (g[a]  *  (b  -  a))  -  ((b  -  c)  *  h[c])  *  (b  -  a)|  \mleq{}  e))))))))
Date html generated:
2019_10_30-AM-10_12_14
Last ObjectModification:
2019_04_02-AM-09_41_56
Theory : reals
Home
Index