Nuprl Lemma : Taylor-theorem-for-2

I:Interval
  (iproper(I)
   (∀f,g,h:I ⟶ℝ.
        ((∀x,y:{a:ℝa ∈ I} .  ((x y)  (h[x] h[y])))
         d(f[x])/dx = λx.g[x] on I
         d(g[x])/dx = λx.h[x] on I
         (∀a,b:{a:ℝa ∈ I} . ∀e:ℝ.
              ((r0 < e)
               (∃c:ℝ
                   ((rmin(a;b) ≤ c)
                   ∧ (c ≤ rmax(a;b))
                   ∧ (|f[b] f[a] (g[a] (b a)) ((b c) h[c]) (b a)| ≤ e))))))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval rleq: x ≤ y rless: x < y rabs: |x| rmin: rmin(x;y) rmax: rmax(x;y) rsub: y req: y rmul: b radd: b int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat_plus: + rless: x < y sq_exists: x:A [B[x]] uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False so_lambda: λ2y.t[x; y] rfun: I ⟶ℝ so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b squash: T subtype_rel: A ⊆B real: sq_stable: SqStable(P) so_apply: x[s1;s2] finite-deriv-seq: finite-deriv-seq(I;k;i,x.F[i; x]) sq_type: SQType(T) guard: {T} select: L[n] cons: [a b] subtract: m so_lambda: λ2x.t[x] label: ...$L... t Taylor-remainder: Taylor-remainder(I;n;b;a;i,x.F[i; x]) Taylor-approx: Taylor-approx(n;a;b;i,x.F[i; x]) less_than': less_than'(a;b) rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q nat: bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) bnot: ¬bb assert: b eq_int: (i =z j) fact: (n)! primrec: primrec(n;b;c) primtailrec: primtailrec(n;i;b;f) true: True rev_uimplies: rev_uimplies(P;Q) lt_int: i <j length: ||as|| list_ind: list_ind nil: [] rat_term_to_real: rat_term_to_real(f;t) rtermVar: rtermVar(var) rat_term_ind: rat_term_ind pi1: fst(t) rtermMultiply: left "*" right rtermDivide: num "/" denom rtermConstant: "const" pi2: snd(t) cand: c∧ B subinterval: I ⊆  nequal: a ≠ b ∈  i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  Taylor-theorem nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than select_wf real_wf cons_wf nil_wf int_seg_properties sq_stable__less_than int-to-real_wf decidable__le intformand_wf intformle_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_var_lemma length_of_cons_lemma length_of_nil_lemma itermAdd_wf int_term_value_add_lemma int_seg_wf req_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_subtype_special int_seg_cases rless_wf derivative_wf i-member_wf rfun_wf iproper_wf interval_wf differentiable-functional2 rsum_wf rmul_wf rdiv_wf fact_wf int_seg_subtype_nat istype-false rless-int istype-le rnexp_wf rsub_wf lt_int_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf assert_of_lt_int fact0_redex_lemma rnexp_zero_lemma radd_wf req_functionality rsum_unroll req_weakening radd_functionality rsum_single assert-rat-term-eq2 rtermMultiply_wf rtermDivide_wf rtermVar_wf rtermConstant_wf nat_plus_wf set_subtype_base rmul_functionality rnexp1 rleq_wf rabs_wf rmin-rmax-subinterval sq_stable__i-member rabs_functionality member_rccint_lemma rsub_functionality eq_int_wf eqtt_to_assert assert_of_eq_int neg_assert_of_eq_int req_inversion rleq_transitivity rleq_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis dependent_set_memberEquality_alt natural_numberEquality setElimination rename isectElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination sqequalRule universeIsType because_Cache applyEquality productElimination imageElimination addEquality inhabitedIsType equalityTransitivity equalitySymmetry imageMemberEquality baseClosed int_eqEquality independent_pairFormation instantiate cumulativity intEquality hypothesis_subsumption setIsType functionIsType closedConclusion inrFormation_alt applyLambdaEquality equalityElimination equalityIstype promote_hyp productIsType int_eqReduceTrueSq int_eqReduceFalseSq

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,g,h:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (h[x]  =  h[y])))
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
                {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.h[x]  on  I
                {}\mRightarrow{}  (\mforall{}a,b:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  \mforall{}e:\mBbbR{}.
                            ((r0  <  e)
                            {}\mRightarrow{}  (\mexists{}c:\mBbbR{}
                                      ((rmin(a;b)  \mleq{}  c)
                                      \mwedge{}  (c  \mleq{}  rmax(a;b))
                                      \mwedge{}  (|f[b]  -  f[a]  +  (g[a]  *  (b  -  a))  -  ((b  -  c)  *  h[c])  *  (b  -  a)|  \mleq{}  e))))))))



Date html generated: 2019_10_30-AM-10_12_14
Last ObjectModification: 2019_04_02-AM-09_41_56

Theory : reals


Home Index