Nuprl Lemma : cosine0
cosine(r0) = r1
Proof
Definitions occuring in Statement : 
cosine: cosine(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
rneq: x ≠ y
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermMultiply: left "*" right
, 
rat_term_ind: rat_term_ind, 
rtermConstant: "const"
, 
rtermDivide: num "/" denom
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat_plus: ℕ+
Lemmas referenced : 
cosine-is-limit, 
int-to-real_wf, 
series-sum-constant, 
ifthenelse_wf, 
eq_int_wf, 
real_wf, 
istype-nat, 
int-rmul_wf, 
fastexp_wf, 
int-rdiv_wf, 
fact_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_plus_inc_int_nzero, 
rnexp_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
req_weakening, 
series-sum_functionality, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rnexp_zero_lemma, 
fact0_redex_lemma, 
exp-fastexp, 
exp0_lemma, 
nequal_wf, 
rmul_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
assert-rat-term-eq2, 
rtermConstant_wf, 
rtermMultiply_wf, 
rtermDivide_wf, 
req_functionality, 
req_transitivity, 
int-rmul-req, 
rmul_functionality, 
int-rdiv-req, 
req-int, 
fact-non-zero, 
rneq-int, 
req_wf, 
nat_plus_wf, 
le-add-cancel, 
add-commutes, 
add_functionality_wrt_le, 
not-lt-2, 
decidable__lt, 
mul_nat_plus, 
equal-wf-base, 
int_formula_prop_less_lemma, 
intformless_wf, 
nat_plus_properties, 
less_than_wf, 
subtype_rel_sets, 
satisfiable-full-omega-tt, 
int_upper_properties, 
le_wf, 
false_wf, 
int_upper_subtype_nat, 
int-rmul_functionality, 
int-rdiv_functionality, 
rnexp0, 
uiff_transitivity, 
rdiv-zero, 
rmul-int, 
cosine_wf, 
nat_wf, 
series-sum-unique
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
independent_functionElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
hypothesisEquality, 
minusEquality, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
applyEquality, 
lambdaFormation_alt, 
inhabitedIsType, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
hypothesis_subsumption, 
cumulativity, 
intEquality, 
closedConclusion, 
baseClosed, 
sqequalBase, 
inrFormation_alt, 
imageMemberEquality, 
applyLambdaEquality, 
setEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality
Latex:
cosine(r0)  =  r1
Date html generated:
2019_10_29-AM-10_35_44
Last ObjectModification:
2019_04_02-AM-09_59_24
Theory : reals
Home
Index