Nuprl Lemma : cosine0

cosine(r0) r1


Proof




Definitions occuring in Statement :  cosine: cosine(x) req: y int-to-real: r(n) natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] int_nzero: -o true: True nequal: a ≠ b ∈  rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T rat_term_to_real: rat_term_to_real(f;t) rtermMultiply: left "*" right rat_term_ind: rat_term_ind rtermConstant: "const" rtermDivide: num "/" denom pi1: fst(t) pi2: snd(t) rev_uimplies: rev_uimplies(P;Q) nat_plus: +
Lemmas referenced :  cosine-is-limit int-to-real_wf series-sum-constant ifthenelse_wf eq_int_wf real_wf istype-nat int-rmul_wf fastexp_wf int-rdiv_wf fact_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_plus_inc_int_nzero rnexp_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add req_weakening series-sum_functionality int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rnexp_zero_lemma fact0_redex_lemma exp-fastexp exp0_lemma nequal_wf rmul_wf rdiv_wf rless-int rless_wf assert-rat-term-eq2 rtermConstant_wf rtermMultiply_wf rtermDivide_wf req_functionality req_transitivity int-rmul-req rmul_functionality int-rdiv-req req-int fact-non-zero rneq-int req_wf nat_plus_wf le-add-cancel add-commutes add_functionality_wrt_le not-lt-2 decidable__lt mul_nat_plus equal-wf-base int_formula_prop_less_lemma intformless_wf nat_plus_properties less_than_wf subtype_rel_sets satisfiable-full-omega-tt int_upper_properties le_wf false_wf int_upper_subtype_nat int-rmul_functionality int-rdiv_functionality rnexp0 uiff_transitivity rdiv-zero rmul-int cosine_wf nat_wf series-sum-unique
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin isectElimination natural_numberEquality hypothesis independent_functionElimination lambdaEquality_alt setElimination rename hypothesisEquality minusEquality dependent_set_memberEquality_alt multiplyEquality because_Cache unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType applyEquality lambdaFormation_alt inhabitedIsType equalityElimination equalityTransitivity equalitySymmetry productElimination equalityIstype promote_hyp instantiate hypothesis_subsumption cumulativity intEquality closedConclusion baseClosed sqequalBase inrFormation_alt imageMemberEquality applyLambdaEquality setEquality computeAll voidEquality isect_memberEquality lambdaEquality dependent_pairFormation lambdaFormation dependent_set_memberEquality

Latex:
cosine(r0)  =  r1



Date html generated: 2019_10_29-AM-10_35_44
Last ObjectModification: 2019_04_02-AM-09_59_24

Theory : reals


Home Index