Nuprl Lemma : not-rv-pos-angle

n:ℕ. ∀a,b,c:ℝ^n.
  ((r0 < d(a;b))  (r0 < d(c;b))  rv-pos-angle(n;a;b;c))  (∃t:ℝ((r0 < |t|) ∧ req-vec(n;c;b t*a b))))


Proof




Definitions occuring in Statement :  real-vec-dist: d(x;y) rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec-mul: a*X real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n rless: x < y rabs: |x| int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q real-vec-dist: d(x;y) rv-pos-angle: rv-pos-angle(n;a;b;c) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) prop: subtype_rel: A ⊆B nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: le: A ≤ B false: False not: ¬A iff: ⇐⇒ Q rneq: x ≠ y guard: {T} or: P ∨ Q rev_implies:  Q itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top rdiv: (x/y) cand: c∧ B exists: x:A. B[x] req-vec: req-vec(n;x;y) real-vec-add: Y real-vec-sub: Y rsub: y real-vec: ^n
Lemmas referenced :  not-rless rabs_wf dot-product_wf real-vec-sub_wf rmul_wf real-vec-norm_wf Cauchy-Schwarz rleq_antisymmetry req_functionality rabs_functionality dot-product-comm rmul_comm not_wf rv-pos-angle_wf rless_wf int-to-real_wf real-vec-dist_wf real_wf rleq_wf real-vec_wf nat_wf rnexp-rless rleq_weakening_equal less_than_wf rnexp_wf false_wf le_wf rless_functionality rnexp0 req_weakening rnexp2-nonneg rdiv_wf rmul_preserves_rless rinv_wf2 rabs-of-nonneg rabs-rdiv real_term_polynomial itermSubtract_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 req_transitivity rmul_functionality rmul-rinv rmul-is-positive real-vec-mul_wf real-vec-add_wf req-vec_wf equal_wf int_seg_wf radd-rminus-assoc radd_comm radd_functionality uiff_transitivity rminus_wf radd_wf req_wf rsub_wf radd-preserves-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis independent_isectElimination because_Cache independent_functionElimination productElimination natural_numberEquality applyEquality lambdaEquality setElimination rename setEquality sqequalRule dependent_functionElimination dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed inrFormation computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality inlFormation productEquality dependent_pairFormation equalitySymmetry equalityTransitivity

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.
    ((r0  <  d(a;b))
    {}\mRightarrow{}  (r0  <  d(c;b))
    {}\mRightarrow{}  (\mneg{}rv-pos-angle(n;a;b;c))
    {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((r0  <  |t|)  \mwedge{}  req-vec(n;c;b  +  t*a  -  b))))



Date html generated: 2017_10_03-AM-10_58_48
Last ObjectModification: 2017_07_28-AM-08_22_00

Theory : reals


Home Index