Nuprl Lemma : not-rv-pos-angle
∀n:ℕ. ∀a,b,c:ℝ^n.
  ((r0 < d(a;b)) 
⇒ (r0 < d(c;b)) 
⇒ (¬rv-pos-angle(n;a;b;c)) 
⇒ (∃t:ℝ. ((r0 < |t|) ∧ req-vec(n;c;b + t*a - b))))
Proof
Definitions occuring in Statement : 
real-vec-dist: d(x;y)
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
real-vec-mul: a*X
, 
real-vec-sub: X - Y
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
rless: x < y
, 
rabs: |x|
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
real-vec-dist: d(x;y)
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat: ℕ
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
rdiv: (x/y)
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
req-vec: req-vec(n;x;y)
, 
real-vec-add: X + Y
, 
real-vec-sub: X - Y
, 
rsub: x - y
, 
real-vec: ℝ^n
Lemmas referenced : 
not-rless, 
rabs_wf, 
dot-product_wf, 
real-vec-sub_wf, 
rmul_wf, 
real-vec-norm_wf, 
Cauchy-Schwarz, 
rleq_antisymmetry, 
req_functionality, 
rabs_functionality, 
dot-product-comm, 
rmul_comm, 
not_wf, 
rv-pos-angle_wf, 
rless_wf, 
int-to-real_wf, 
real-vec-dist_wf, 
real_wf, 
rleq_wf, 
real-vec_wf, 
nat_wf, 
rnexp-rless, 
rleq_weakening_equal, 
less_than_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
rless_functionality, 
rnexp0, 
req_weakening, 
rnexp2-nonneg, 
rdiv_wf, 
rmul_preserves_rless, 
rinv_wf2, 
rabs-of-nonneg, 
rabs-rdiv, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
rmul-is-positive, 
real-vec-mul_wf, 
real-vec-add_wf, 
req-vec_wf, 
equal_wf, 
int_seg_wf, 
radd-rminus-assoc, 
radd_comm, 
radd_functionality, 
uiff_transitivity, 
rminus_wf, 
radd_wf, 
req_wf, 
rsub_wf, 
radd-preserves-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
productElimination, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
sqequalRule, 
dependent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
inrFormation, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
inlFormation, 
productEquality, 
dependent_pairFormation, 
equalitySymmetry, 
equalityTransitivity
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c:\mBbbR{}\^{}n.
    ((r0  <  d(a;b))
    {}\mRightarrow{}  (r0  <  d(c;b))
    {}\mRightarrow{}  (\mneg{}rv-pos-angle(n;a;b;c))
    {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  ((r0  <  |t|)  \mwedge{}  req-vec(n;c;b  +  t*a  -  b))))
Date html generated:
2017_10_03-AM-10_58_48
Last ObjectModification:
2017_07_28-AM-08_22_00
Theory : reals
Home
Index