Nuprl Lemma : second-deriv-nonneg-convex

I:Interval
  (iproper(I)
   (∀f,g,h:I ⟶ℝ.
        ((∀x,y:{a:ℝa ∈ I} .  ((x y)  (h[x] h[y])))
         d(f[x])/dx = λx.g[x] on I
         d(g[x])/dx = λx.h[x] on I
         (∀x:{a:ℝa ∈ I} (r0 ≤ h[x]))
         convex-on(I;x.f[x]))))


Proof




Definitions occuring in Statement :  derivative: d(f[x])/dx = λz.g[z] on I convex-on: convex-on(I;x.f[x]) rfun: I ⟶ℝ i-member: r ∈ I iproper: iproper(I) interval: Interval rleq: x ≤ y req: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] rfun: I ⟶ℝ label: ...$L... t uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a sq_stable: SqStable(P) squash: T exists: x:A. B[x] subinterval: I ⊆  top: Top cand: c∧ B stable: Stable{P} not: ¬A or: P ∨ Q false: False guard: {T} rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2 rge: x ≥ y iff: ⇐⇒ Q convex-on: convex-on(I;x.f[x]) i-member: r ∈ I rccint: [l, u] true: True subtype_rel: A ⊆B rev_implies:  Q
Lemmas referenced :  Taylor-theorem-for-2 all_wf real_wf i-member_wf rleq_wf int-to-real_wf derivative_wf req_wf rfun_wf iproper_wf interval_wf rleq-iff-all-rless radd_wf rmul_wf rsub_wf set_wf rless_wf sq_stable__rless rmin-rmax-subinterval sq_stable__i-member stable__rleq member_rccint_lemma false_wf or_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle rmax-req rleq_weakening_rless radd-preserves-rleq rleq_functionality radd-zero rleq_transitivity rmax_wf rleq_weakening itermSubtract_wf itermAdd_wf itermVar_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rmul-nonneg rmul-nonneg-case1 rleq_functionality_wrt_implies rleq_weakening_equal rsub_functionality_wrt_rleq itermConstant_wf rmin-req req_inversion rmin_wf equal_wf rmul_preserves_rleq2 rmul-zero-both rmul_comm rleq-implies-rleq itermMultiply_wf real_term_value_mul_lemma rleq_antisymmetry not-rless req_weakening rmul_functionality rsub_functionality rabs_wf rabs-difference-bound-rleq radd_comm i-member-convex rccint_wf radd_functionality squash_wf true_wf iff_weakening_equal rminus_wf itermMinus_wf real_term_value_minus_lemma radd_functionality_wrt_rleq
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination setEquality sqequalRule lambdaEquality natural_numberEquality applyEquality setElimination rename dependent_set_memberEquality because_Cache functionEquality productElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidElimination voidEquality independent_pairFormation unionElimination approximateComputation int_eqEquality equalityTransitivity equalitySymmetry intEquality inlFormation productEquality inrFormation universeEquality promote_hyp

Latex:
\mforall{}I:Interval
    (iproper(I)
    {}\mRightarrow{}  (\mforall{}f,g,h:I  {}\mrightarrow{}\mBbbR{}.
                ((\mforall{}x,y:\{a:\mBbbR{}|  a  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (h[x]  =  h[y])))
                {}\mRightarrow{}  d(f[x])/dx  =  \mlambda{}x.g[x]  on  I
                {}\mRightarrow{}  d(g[x])/dx  =  \mlambda{}x.h[x]  on  I
                {}\mRightarrow{}  (\mforall{}x:\{a:\mBbbR{}|  a  \mmember{}  I\}  .  (r0  \mleq{}  h[x]))
                {}\mRightarrow{}  convex-on(I;x.f[x]))))



Date html generated: 2018_05_22-PM-02_50_16
Last ObjectModification: 2017_10_21-PM-09_45_19

Theory : reals


Home Index