Nuprl Lemma : uniform-partition-refines
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀k,m:ℕ+.  uniform-partition([a, b];m * k) refines uniform-partition([a, b];k)
Proof
Definitions occuring in Statement : 
partition-refines: P refines Q, 
uniform-partition: uniform-partition(I;k), 
rccint: [l, u], 
rleq: x ≤ y, 
real: ℝ, 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
set: {x:A| B[x]} , 
multiply: n * m
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
partition-refines: P refines Q, 
frs-refines: frs-refines(p;q), 
l_all: (∀x∈L.P[x]), 
uniform-partition: uniform-partition(I;k), 
top: Top, 
nat: ℕ, 
nat_plus: ℕ+, 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
prop: ℙ, 
int_seg: {i..j-}, 
i-finite: i-finite(I), 
rccint: [l, u], 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
rneq: x ≠ y, 
rev_implies: P ⇐ Q, 
lelt: i ≤ j < k, 
subtype_rel: A ⊆r B, 
real: ℝ, 
partition: partition(I), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
l_exists: (∃x∈L. P[x]), 
le: A ≤ B, 
uiff: uiff(P;Q), 
subtract: n - m, 
less_than': less_than'(a;b), 
less_than: a < b, 
cand: A c∧ B, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
rev_uimplies: rev_uimplies(P;Q), 
rdiv: (x/y), 
itermConstant: "const", 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
rccint-icompact, 
sq_stable__rleq, 
mklist_length, 
subtract_wf, 
int_seg_properties, 
length_wf, 
nat_plus_wf, 
mklist_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
rdiv_wf, 
radd_wf, 
rmul_wf, 
rsub_wf, 
int-to-real_wf, 
left-endpoint_wf, 
rccint_wf, 
right-endpoint_wf, 
rless-int, 
decidable__lt, 
rless_wf, 
real_wf, 
int_seg_wf, 
uniform-partition_wf, 
partition_wf, 
set_wf, 
rleq_wf, 
mul_preserves_le, 
itermAdd_wf, 
int_term_value_add_lemma, 
mul_preserves_lt, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
lelt_wf, 
req_wf, 
select_wf, 
multiply-is-int-iff, 
int_subtype_base, 
false_wf, 
not-lt-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
mul-distributes-right, 
mul-commutes, 
mul-associates, 
one-mul, 
less-iff-le, 
mul-distributes, 
zero-add, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
less_than_wf, 
left_endpoint_rccint_lemma, 
right_endpoint_rccint_lemma, 
squash_wf, 
true_wf, 
mklist_select, 
iff_weakening_equal, 
rmul-is-positive, 
subtract-add-cancel, 
rmul_preserves_req, 
rminus_wf, 
rinv_wf2, 
req_weakening, 
req_functionality, 
rdiv_functionality, 
radd_functionality, 
rmul_functionality, 
req_inversion, 
rmul-int, 
rsub_functionality, 
req_transitivity, 
real_term_polynomial, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
rmul-rinv3, 
rminus_functionality, 
rinv-of-rmul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
hypothesis, 
productElimination, 
independent_functionElimination, 
isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
functionEquality, 
intEquality, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
addEquality, 
inrFormation, 
applyEquality, 
multiplyEquality, 
baseApply, 
closedConclusion, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
inlFormation
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}k,m:\mBbbN{}\msupplus{}.    uniform-partition([a,  b];m  *  k)  refines  uniform-partition([a,  b];k\000C)
Date html generated:
2017_10_03-AM-09_46_40
Last ObjectModification:
2017_07_28-AM-07_59_45
Theory : reals
Home
Index