Nuprl Lemma : involution-with-unique-fixpoint
∀n:ℕ
  ∀[T:Type]
    (T ~ ℕn
    
⇒ (∀f:T ⟶ T
          ((∀x:T. ((f (f x)) = x ∈ T))
          
⇒ (∀x,y:T.  (((f x) = x ∈ T) 
⇒ ((f y) = y ∈ T) 
⇒ (x = y ∈ T)))
          
⇒ ((n rem 2) = 1 ∈ ℤ 
⇐⇒ ∃x:T. ((f x) = x ∈ T)))))
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
remainder: n rem m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
inject: Inj(A;B;f)
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
l_exists: (∃x∈L. P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
le: A ≤ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
l_all: (∀x∈L.P[x])
, 
assert: ↑b
, 
bnot: ¬bb
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
nequal: a ≠ b ∈ T 
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
less_than': less_than'(a;b)
, 
no_repeats: no_repeats(T;l)
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
cons: [a / b]
, 
subtract: n - m
, 
nil: []
, 
select: L[n]
, 
orbit: orbit(T;f;L)
, 
l_member: (x ∈ l)
, 
nat_plus: ℕ+
Lemmas referenced : 
involution-has-fixpoint, 
istype-int, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
equipollent_wf, 
int_seg_wf, 
istype-universe, 
istype-nat, 
count-by-orbits, 
equal_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
orbit-of-involution, 
l_sum-sum, 
list_wf, 
length_wf, 
l_member_wf, 
isolate_summand, 
int_seg_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
select_wf, 
decidable__lt, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
assert_of_eq_int, 
eqtt_to_assert, 
bool_wf, 
eq_int_wf, 
select_member, 
l_disjoint_wf, 
pairwise-implies, 
decidable__equal_int, 
nat_wf, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
false_wf, 
int_seg_subtype_nat, 
singleton-orbit, 
hd_wf, 
set_wf, 
equal-wf-T-base, 
length_of_cons_lemma, 
null_cons_lemma, 
product_subtype_list, 
length_of_nil_lemma, 
null_nil_lemma, 
list-cases, 
hd_member, 
subtype_rel_list, 
nil_wf, 
orbit_wf, 
base_wf, 
stuck-spread, 
cons_wf, 
orbit-transitive, 
lelt_wf, 
fun_exp_wf, 
exists_wf, 
l_all_functionality, 
int_term_value_add_lemma, 
itermAdd_wf, 
non_neg_length, 
equal-wf-base, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
fun_exp-fixedpoint, 
less_than_wf, 
ge_wf, 
ifthenelse_wf, 
length_wf_nat, 
sum_functionality, 
sum_split1, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
sum_wf, 
add_functionality_wrt_eq, 
sum_constant, 
mul-distributes-right, 
add-associates, 
add-swap, 
add-commutes, 
mul-commutes, 
mul-distributes, 
rem_invariant, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
Error :isect_memberFormation_alt, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
independent_functionElimination, 
hypothesis, 
Error :equalityIstype, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
Error :lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
Error :productIsType, 
Error :universeIsType, 
because_Cache, 
Error :functionIsType, 
Error :inhabitedIsType, 
equalityTransitivity, 
setElimination, 
rename, 
instantiate, 
universeEquality, 
imageElimination, 
imageMemberEquality, 
productElimination, 
Error :setIsType, 
Error :dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
cumulativity, 
promote_hyp, 
equalityElimination, 
dependent_set_memberEquality, 
applyLambdaEquality, 
functionExtensionality, 
setEquality, 
hypothesis_subsumption, 
addEquality, 
axiomEquality, 
intWeakElimination, 
sqequalIntensionalEquality, 
axiomSqEquality, 
multiplyEquality, 
minusEquality, 
hyp_replacement, 
remainderEquality
Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}n
        {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                    ((\mforall{}x:T.  ((f  (f  x))  =  x))
                    {}\mRightarrow{}  (\mforall{}x,y:T.    (((f  x)  =  x)  {}\mRightarrow{}  ((f  y)  =  y)  {}\mRightarrow{}  (x  =  y)))
                    {}\mRightarrow{}  ((n  rem  2)  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((f  x)  =  x)))))
Date html generated:
2019_06_20-PM-02_18_38
Last ObjectModification:
2019_03_06-AM-10_53_13
Theory : equipollence!!cardinality!
Home
Index