Nuprl Lemma : involution-with-unique-fixpoint

n:ℕ
  ∀[T:Type]
    (T ~ ℕn
     (∀f:T ⟶ T
          ((∀x:T. ((f (f x)) x ∈ T))
           (∀x,y:T.  (((f x) x ∈ T)  ((f y) y ∈ T)  (x y ∈ T)))
           ((n rem 2) 1 ∈ ℤ ⇐⇒ ∃x:T. ((f x) x ∈ T)))))


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} nat: uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] remainder: rem m natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a rev_implies:  Q exists: x:A. B[x] inject: Inj(A;B;f) cand: c∧ B squash: T prop: true: True guard: {T} l_exists: (∃x∈L. P[x]) int_seg: {i..j-} lelt: i ≤ j < k less_than: a < b le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top l_all: (∀x∈L.P[x]) assert: b bnot: ¬bb sq_type: SQType(T) bfalse: ff ifthenelse: if then else fi  uiff: uiff(P;Q) btrue: tt it: unit: Unit bool: 𝔹 nequal: a ≠ b ∈  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] less_than': less_than'(a;b) no_repeats: no_repeats(T;l) l_disjoint: l_disjoint(T;l1;l2) cons: [a b] subtract: m nil: [] select: L[n] orbit: orbit(T;f;L) l_member: (x ∈ l) nat_plus: +
Lemmas referenced :  involution-has-fixpoint istype-int set_subtype_base le_wf int_subtype_base equipollent_wf int_seg_wf istype-universe istype-nat count-by-orbits equal_wf squash_wf true_wf subtype_rel_self iff_weakening_equal orbit-of-involution l_sum-sum list_wf length_wf l_member_wf isolate_summand int_seg_properties nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le select_wf decidable__lt neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf select_member l_disjoint_wf pairwise-implies decidable__equal_int nat_wf int_formula_prop_eq_lemma intformeq_wf false_wf int_seg_subtype_nat singleton-orbit hd_wf set_wf equal-wf-T-base length_of_cons_lemma null_cons_lemma product_subtype_list length_of_nil_lemma null_nil_lemma list-cases hd_member subtype_rel_list nil_wf orbit_wf base_wf stuck-spread cons_wf orbit-transitive lelt_wf fun_exp_wf exists_wf l_all_functionality int_term_value_add_lemma itermAdd_wf non_neg_length equal-wf-base int_term_value_subtract_lemma itermSubtract_wf subtract_wf fun_exp-fixedpoint less_than_wf ge_wf ifthenelse_wf length_wf_nat sum_functionality sum_split1 int_term_value_mul_lemma itermMultiply_wf sum_wf add_functionality_wrt_eq sum_constant mul-distributes-right add-associates add-swap add-commutes mul-commutes mul-distributes rem_invariant and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination independent_functionElimination hypothesis Error :equalityIstype,  sqequalRule baseApply closedConclusion baseClosed applyEquality intEquality Error :lambdaEquality_alt,  natural_numberEquality independent_isectElimination sqequalBase equalitySymmetry Error :productIsType,  Error :universeIsType,  because_Cache Error :functionIsType,  Error :inhabitedIsType,  equalityTransitivity setElimination rename instantiate universeEquality imageElimination imageMemberEquality productElimination Error :setIsType,  Error :dependent_set_memberEquality_alt,  unionElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination lambdaFormation voidEquality isect_memberEquality lambdaEquality dependent_pairFormation cumulativity promote_hyp equalityElimination dependent_set_memberEquality applyLambdaEquality functionExtensionality setEquality hypothesis_subsumption addEquality axiomEquality intWeakElimination sqequalIntensionalEquality axiomSqEquality multiplyEquality minusEquality hyp_replacement remainderEquality

Latex:
\mforall{}n:\mBbbN{}
    \mforall{}[T:Type]
        (T  \msim{}  \mBbbN{}n
        {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                    ((\mforall{}x:T.  ((f  (f  x))  =  x))
                    {}\mRightarrow{}  (\mforall{}x,y:T.    (((f  x)  =  x)  {}\mRightarrow{}  ((f  y)  =  y)  {}\mRightarrow{}  (x  =  y)))
                    {}\mRightarrow{}  ((n  rem  2)  =  1  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((f  x)  =  x)))))



Date html generated: 2019_06_20-PM-02_18_38
Last ObjectModification: 2019_03_06-AM-10_53_13

Theory : equipollence!!cardinality!


Home Index