Nuprl Lemma : polyvar_wf2

[n:ℕ]. ∀[v:ℤ].  polyvar(n;v) ∈ polynom(n) supposing 0 < n


Proof




Definitions occuring in Statement :  polyvar: polyvar(n;v) polynom: polynom(n) nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: less_than: a < b squash: T less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q polynom: polynom(n) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  subtype_rel: A ⊆B bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  polyform-lead-nonzero: polyform-lead-nonzero(n;p) polyform: polyform(n) polyvar: polyvar(n;v) true: True has-value: (a)↓ int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q poly-zero: poly-zero(n;p)
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int polyvar_wf intformeq_wf int_formula_prop_eq_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nil_wf polynom_wf le_wf length_of_nil_lemma polyform-lead-nonzero_wf subtype_rel_list polyform_wf polynom_subtype_polyform decidable__lt top_wf value-type-has-value int-value-type decidable__equal_int polyform-value-type polyconst_wf cons_wf polyconst_wf2 length_of_cons_lemma reduce_hd_cons_lemma assert_wf poly-zero_wf nat_wf length_upto upto_wf int_seg_wf equal-wf-base all_wf list_wf assert-poly-zero not_wf polyconst-val list_subtype_base int_subtype_base false_wf null_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry imageElimination productElimination because_Cache unionElimination equalityElimination applyEquality promote_hyp instantiate cumulativity dependent_set_memberEquality lessCases sqequalAxiom imageMemberEquality baseClosed callbyvalueReduce int_eqReduceTrueSq int_eqReduceFalseSq baseApply closedConclusion setEquality addLevel impliesFunctionality levelHypothesis

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[v:\mBbbZ{}].    polyvar(n;v)  \mmember{}  polynom(n)  supposing  0  <  n



Date html generated: 2017_09_29-PM-06_03_53
Last ObjectModification: 2017_04_26-PM-02_05_19

Theory : integer!polynomials


Home Index