Nuprl Lemma : first-success-is-inl

[T:Type]. ∀[A:T ⟶ Type]. ∀[f:x:T ⟶ (A[x]?)]. ∀[L:T List]. ∀[j:ℕ||L||]. ∀[a:A[L[j]]].
  (first-success(f;L) (inl <j, a>) ∈ (i:ℕ||L|| × A[L[i]]?)
  ⇐⇒ j < ||L|| ∧ ((f L[j]) (inl a) ∈ (A[L[j]]?)) ∧ (∀x∈firstn(j;L).↑isr(f x)))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) l_all: (∀x∈L.P[x]) first-success: first-success(f;L) select: L[n] length: ||as|| list: List int_seg: {i..j-} assert: b isr: isr(x) less_than: a < b uall: [x:A]. B[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] inl: inl x union: left right natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: iff: ⇐⇒ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b squash: T guard: {T} rev_implies:  Q l_all: (∀x∈L.P[x]) or: P ∨ Q first-success: first-success(f;L) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: so_lambda3 so_apply: x[s1;s2;s3] cons: [a b] decidable: Dec(P) isr: isr(x) colength: colength(L) so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than': less_than'(a;b) subtype_rel: A ⊆B firstn: firstn(n;as) list_ind: list_ind uiff: uiff(P;Q) pi2: snd(t) pi1: fst(t) cand: c∧ B bfalse: ff btrue: tt ifthenelse: if then else fi  assert: b outl: outl(x) isl: isl(x) true: True unit: Unit bool: 𝔹 bnot: ¬bb istype: istype(T) subtract: m
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than member-less_than int_seg_properties intformeq_wf int_formula_prop_eq_lemma assert_witness list-cases length_of_nil_lemma stuck-spread istype-base list_ind_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list decidable__le intformnot_wf int_formula_prop_not_lemma istype-le select_wf firstn_wf decidable__lt length_wf bfalse_wf btrue_wf subtract-1-ge-0 subtype_base_sq set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf itermSubtract_wf itermAdd_wf int_term_value_subtract_lemma int_term_value_add_lemma le_wf length_of_cons_lemma list_ind_cons_lemma istype-nat list_wf unit_wf2 istype-universe satisfiable-full-omega-tt equal-wf-base-T less_than_wf equal_wf l_all_wf nil_wf assert_wf isr_wf l_member_wf int_seg_wf non_neg_length add-is-int-iff false_wf cons_wf istype-false lelt_wf first0 subtype_rel_list top_wf l_all_nil assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf bool_cases lt_int_wf bnot_wf not_wf istype-assert l_all_cons outl_wf true_wf first-success_wf assert-bnot bool_cases_sqequal iff_weakening_equal select_cons_tl squash_wf subtype_rel_wf add-subtract-cancel select-cons-tl subtype_rel-equal add-member-int_seg2 equal_functionality_wrt_subtype_rel2 subtype_rel_self subtype_rel_union select-cons assert_of_le_int le_int_wf l_all_wf_nil btrue_neq_bfalse select-cons-hd isr-first-success
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination independent_pairEquality imageElimination equalityTransitivity equalitySymmetry applyLambdaEquality axiomEquality functionIsTypeImplies inhabitedIsType isectIsTypeImplies unionElimination baseClosed promote_hyp hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt applyEquality instantiate baseApply closedConclusion intEquality sqequalBase functionIsType unionIsType universeEquality isect_memberFormation lambdaFormation dependent_pairFormation lambdaEquality isect_memberEquality voidEquality computeAll unionEquality productEquality inlEquality dependent_pairEquality functionExtensionality cumulativity setEquality productIsType addEquality inlEquality_alt dependent_pairEquality_alt pointwiseFunctionality setIsType Error :memTop,  hyp_replacement equalityIsType1 equalityIsType2 equalityElimination isectIsType imageMemberEquality equalityIsType3

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].  \mforall{}[f:x:T  {}\mrightarrow{}  (A[x]?)].  \mforall{}[L:T  List].  \mforall{}[j:\mBbbN{}||L||].  \mforall{}[a:A[L[j]]].
    (first-success(f;L)  =  (inl  <j,  a>)  \mLeftarrow{}{}\mRightarrow{}  j  <  ||L||  \mwedge{}  ((f  L[j])  =  (inl  a))  \mwedge{}  (\mforall{}x\mmember{}firstn(j;L).\muparrow{}isr(f  x\000C)))



Date html generated: 2020_05_19-PM-09_41_49
Last ObjectModification: 2019_12_31-PM-07_21_56

Theory : list_1


Home Index