Nuprl Lemma : int_pi_detach

i:ℤ. ℤ-Detach((i)ℤ-rng)


Proof




Definitions occuring in Statement :  int_ring: -rng princ_ideal: (a)r detach: T-Detach(A) all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] princ_ideal: (a)r detach: T-Detach(A) int_ring: -rng rng_car: |r| pi1: fst(t) rng_times: * pi2: snd(t) infix_ap: y member: t ∈ T decidable: Dec(P) or: P ∨ Q prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] guard: {T} exists: x:A. B[x] uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q sq_type: SQType(T) nequal: a ≠ b ∈  int_nzero: -o uiff: uiff(P;Q) squash: T true: True iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int decidable__int_equal not_wf exists_wf equal-wf-base int_subtype_base satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_formula_prop_wf subtype_base_sq div_rem_sum nequal_wf add-is-int-iff multiply-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf mul-commutes equal_wf squash_wf true_wf divide-exact iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule intEquality cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination equalityTransitivity equalitySymmetry inlFormation isectElimination lambdaEquality applyEquality baseApply closedConclusion baseClosed because_Cache inrFormation dependent_pairFormation independent_isectElimination int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll independent_functionElimination productElimination promote_hyp instantiate cumulativity multiplyEquality remainderEquality dependent_set_memberEquality divideEquality pointwiseFunctionality rename imageElimination universeEquality equalityUniverse levelHypothesis imageMemberEquality hyp_replacement applyLambdaEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mBbbZ{}-Detach((i)\mBbbZ{}-rng)



Date html generated: 2017_10_01-AM-08_18_44
Last ObjectModification: 2017_02_28-PM-02_03_25

Theory : rings_1


Home Index