Nuprl Lemma : module_act_minus_r

A:Rng. ∀m:A-Module. ∀a:|A|. ∀u:m.car.  ((a m.act (m.minus u)) (m.minus (a m.act u)) ∈ m.car)


Proof




Definitions occuring in Statement :  module: A-Module alg_act: a.act alg_minus: a.minus alg_car: a.car infix_ap: y all: x:A. B[x] apply: a equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] rng: Rng module: A-Module grp_of_module: m↓grp add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) rng_of_alg: a↓rg rng_car: |r| grp_inv: ~ pi2: snd(t) rng_minus: -r subtype_rel: A ⊆B guard: {T} uimplies: supposing a infix_ap: y uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) squash: T prop: true: True iff: ⇐⇒ Q rev_implies:  Q implies:  Q grp_op: * rng_plus: +r grp_id: e rng_zero: 0
Lemmas referenced :  alg_car_wf rng_car_wf module_wf rng_wf grp_eq_op_l grp_of_module_wf2 grp_subtype_igrp abgrp_subtype_grp subtype_rel_transitivity abgrp_wf grp_wf igrp_wf alg_act_wf grp_inv_wf grp_of_module_wf grp_car_wf equal_wf squash_wf true_wf infix_ap_wf grp_op_wf grp_inverse iff_weakening_equal module_act_plus alg_minus_wf alg_zero_wf grp_id_wf module_act_zero_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality sqequalRule applyEquality instantiate independent_isectElimination because_Cache lambdaEquality productElimination imageElimination equalityTransitivity equalitySymmetry universeEquality functionEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}A:Rng.  \mforall{}m:A-Module.  \mforall{}a:|A|.  \mforall{}u:m.car.    ((a  m.act  (m.minus  u))  =  (m.minus  (a  m.act  u)))



Date html generated: 2017_10_01-AM-09_51_51
Last ObjectModification: 2017_03_03-PM-00_46_44

Theory : algebras_1


Home Index