Nuprl Lemma : rng_to_alg_wf

R:CRng. (rng_to_alg(R) ∈ algebra{i:l}(R))


Proof




Definitions occuring in Statement :  rng_to_alg: rng_to_alg(r) algebra: algebra{i:l}(A) all: x:A. B[x] member: t ∈ T crng: CRng
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T crng: CRng algebra: algebra{i:l}(A) module: A-Module rng: Rng rng_to_alg: rng_to_alg(r) algebra_sig: algebra_sig{i:l}(A) alg_car: a.car pi1: fst(t) alg_plus: a.plus pi2: snd(t) alg_zero: a.zero alg_minus: a.minus alg_act: a.act ring_p: IsRing(T;plus;zero;neg;times;one) and: P ∧ Q cand: c∧ B action_p: IsAction(A;x;e;S;f) true: True squash: T prop: subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) alg_times: a.times alg_one: a.one dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) infix_ap: y so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  crng_properties crng_wf rng_properties rng_car_wf rng_eq_wf rng_le_wf rng_plus_wf rng_zero_wf rng_minus_wf rng_times_wf rng_one_wf rng_div_wf unit_wf2 bool_wf rng_plus_comm2 infix_ap_wf equal_wf squash_wf true_wf rng_times_assoc iff_weakening_equal rng_times_one rng_times_over_plus group_p_wf alg_car_wf alg_plus_wf alg_zero_wf alg_minus_wf comm_wf action_p_wf alg_act_wf bilinear_p_wf crng_times_ac_1 ring_p_wf monoid_p_wf alg_times_wf alg_one_wf bilinear_wf all_wf dist_1op_2op_lr_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename dependent_set_memberEquality dependent_pairEquality because_Cache functionEquality productEquality unionEquality cumulativity sqequalRule productElimination independent_pairFormation isect_memberFormation lambdaEquality dependent_functionElimination axiomEquality isect_memberEquality natural_numberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality imageMemberEquality baseClosed independent_isectElimination independent_functionElimination independent_pairEquality

Latex:
\mforall{}R:CRng.  (rng\_to\_alg(R)  \mmember{}  algebra\{i:l\}(R))



Date html generated: 2017_10_01-AM-09_52_01
Last ObjectModification: 2017_03_03-PM-00_46_53

Theory : algebras_1


Home Index