Nuprl Lemma : rng_to_alg_wf
∀R:CRng. (rng_to_alg(R) ∈ algebra{i:l}(R))
Proof
Definitions occuring in Statement : 
rng_to_alg: rng_to_alg(r)
, 
algebra: algebra{i:l}(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
crng: CRng
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
algebra: algebra{i:l}(A)
, 
module: A-Module
, 
rng: Rng
, 
rng_to_alg: rng_to_alg(r)
, 
algebra_sig: algebra_sig{i:l}(A)
, 
alg_car: a.car
, 
pi1: fst(t)
, 
alg_plus: a.plus
, 
pi2: snd(t)
, 
alg_zero: a.zero
, 
alg_minus: a.minus
, 
alg_act: a.act
, 
ring_p: IsRing(T;plus;zero;neg;times;one)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
action_p: IsAction(A;x;e;S;f)
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f)
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
ident: Ident(T;op;id)
, 
alg_times: a.times
, 
alg_one: a.one
, 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op)
, 
infix_ap: x f y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
crng_properties, 
crng_wf, 
rng_properties, 
rng_car_wf, 
rng_eq_wf, 
rng_le_wf, 
rng_plus_wf, 
rng_zero_wf, 
rng_minus_wf, 
rng_times_wf, 
rng_one_wf, 
rng_div_wf, 
unit_wf2, 
bool_wf, 
rng_plus_comm2, 
infix_ap_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_assoc, 
iff_weakening_equal, 
rng_times_one, 
rng_times_over_plus, 
group_p_wf, 
alg_car_wf, 
alg_plus_wf, 
alg_zero_wf, 
alg_minus_wf, 
comm_wf, 
action_p_wf, 
alg_act_wf, 
bilinear_p_wf, 
crng_times_ac_1, 
ring_p_wf, 
monoid_p_wf, 
alg_times_wf, 
alg_one_wf, 
bilinear_wf, 
all_wf, 
dist_1op_2op_lr_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_pairEquality, 
because_Cache, 
functionEquality, 
productEquality, 
unionEquality, 
cumulativity, 
sqequalRule, 
productElimination, 
independent_pairFormation, 
isect_memberFormation, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairEquality
Latex:
\mforall{}R:CRng.  (rng\_to\_alg(R)  \mmember{}  algebra\{i:l\}(R))
Date html generated:
2017_10_01-AM-09_52_01
Last ObjectModification:
2017_03_03-PM-00_46_53
Theory : algebras_1
Home
Index