Nuprl Lemma : mon_for_when_swap

g:Mon. ∀A:Type. ∀as:A List. ∀b:𝔹. ∀f:A ⟶ |g|.
  ((For{g} x ∈ as. (when b. f[x])) (when b. (For{g} x ∈ as. f[x])) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] list: List bool: 𝔹 so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T mon_when: when b. p mon: Mon grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] mon: Mon subtype_rel: A ⊆B imon: IMonoid so_apply: x[s] implies:  Q top: Top squash: T infix_ap: y true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  list_induction all_wf bool_wf grp_car_wf equal_wf mon_for_wf subtype_rel_self imon_wf mon_when_wf list_wf mon_for_nil_lemma mon_when_of_id mon_for_cons_lemma grp_op_wf infix_ap_wf iff_weakening_equal mon_when_thru_op mon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis functionEquality cumulativity setElimination rename because_Cache dependent_functionElimination applyEquality instantiate functionExtensionality independent_functionElimination isect_memberEquality voidElimination voidEquality equalitySymmetry imageElimination natural_numberEquality imageMemberEquality baseClosed equalityTransitivity independent_isectElimination productElimination universeEquality

Latex:
\mforall{}g:Mon.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}b:\mBbbB{}.  \mforall{}f:A  {}\mrightarrow{}  |g|.
    ((For\{g\}  x  \mmember{}  as.  (when  b.  f[x]))  =  (when  b.  (For\{g\}  x  \mmember{}  as.  f[x])))



Date html generated: 2017_10_01-AM-09_55_32
Last ObjectModification: 2017_03_03-PM-00_56_13

Theory : list_2


Home Index