Nuprl Lemma : mon_for_when_swap
∀g:Mon. ∀A:Type. ∀as:A List. ∀b:𝔹. ∀f:A ⟶ |g|.
  ((For{g} x ∈ as. (when b. f[x])) = (when b. (For{g} x ∈ as. f[x])) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
list: T List
, 
bool: 𝔹
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
mon_when: when b. p
, 
mon: Mon
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
mon: Mon
, 
subtype_rel: A ⊆r B
, 
imon: IMonoid
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
squash: ↓T
, 
infix_ap: x f y
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
list_induction, 
all_wf, 
bool_wf, 
grp_car_wf, 
equal_wf, 
mon_for_wf, 
subtype_rel_self, 
imon_wf, 
mon_when_wf, 
list_wf, 
mon_for_nil_lemma, 
mon_when_of_id, 
mon_for_cons_lemma, 
grp_op_wf, 
infix_ap_wf, 
iff_weakening_equal, 
mon_when_thru_op, 
mon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
setElimination, 
rename, 
because_Cache, 
dependent_functionElimination, 
applyEquality, 
instantiate, 
functionExtensionality, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalitySymmetry, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_isectElimination, 
productElimination, 
universeEquality
Latex:
\mforall{}g:Mon.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}b:\mBbbB{}.  \mforall{}f:A  {}\mrightarrow{}  |g|.
    ((For\{g\}  x  \mmember{}  as.  (when  b.  f[x]))  =  (when  b.  (For\{g\}  x  \mmember{}  as.  f[x])))
Date html generated:
2017_10_01-AM-09_55_32
Last ObjectModification:
2017_03_03-PM-00_56_13
Theory : list_2
Home
Index