Nuprl Lemma : remove1_functionality_wrt_permr
∀s:DSet. ∀a,a':|s|. ∀bs,bs':|s| List.  ((a = a' ∈ |s|) ⇒ (bs ≡(|s|) bs') ⇒ ((bs \ a) ≡(|s|) (bs' \ a')))
Proof
Definitions occuring in Statement : 
remove1: as \ a, 
permr: as ≡(T) bs, 
list: T List, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
equal: s = t ∈ T, 
dset: DSet, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
dset: DSet, 
prop: ℙ, 
true: True, 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
uiff: uiff(P;Q), 
not: ¬A, 
false: False
Lemmas referenced : 
permr_wf, 
set_car_wf, 
list_wf, 
dset_wf, 
remove1_wf, 
decidable__assert, 
mem_wf, 
assert_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
assert_functionality_wrt_uiff, 
mem_functionality_wrt_permr, 
iff_weakening_uiff, 
permr_hd_cancel, 
cons_wf, 
permr_functionality_wrt_permr, 
cons_remove1_permr, 
not_mem_remove1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
equalityIsType1, 
inhabitedIsType, 
because_Cache, 
natural_numberEquality, 
unionElimination, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
voidElimination
Latex:
\mforall{}s:DSet.  \mforall{}a,a':|s|.  \mforall{}bs,bs':|s|  List.    ((a  =  a')  {}\mRightarrow{}  (bs  \mequiv{}(|s|)  bs')  {}\mRightarrow{}  ((bs  \mbackslash{}  a)  \mequiv{}(|s|)  (bs'  \mbackslash{}  a')))
Date html generated:
2019_10_16-PM-01_03_51
Last ObjectModification:
2018_10_08-AM-11_44_33
Theory : list_2
Home
Index