Nuprl Lemma : remove1_functionality_wrt_permr

s:DSet. ∀a,a':|s|. ∀bs,bs':|s| List.  ((a a' ∈ |s|)  (bs ≡(|s|) bs')  ((bs a) ≡(|s|) (bs' a')))


Proof




Definitions occuring in Statement :  remove1: as a permr: as ≡(T) bs list: List all: x:A. B[x] implies:  Q equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] dset: DSet prop: true: True decidable: Dec(P) or: P ∨ Q squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) not: ¬A false: False
Lemmas referenced :  permr_wf set_car_wf list_wf dset_wf remove1_wf decidable__assert mem_wf assert_wf squash_wf true_wf subtype_rel_self iff_weakening_equal assert_functionality_wrt_uiff mem_functionality_wrt_permr iff_weakening_uiff permr_hd_cancel cons_wf permr_functionality_wrt_permr cons_remove1_permr not_mem_remove1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isectElimination setElimination rename hypothesisEquality hypothesis equalityIsType1 inhabitedIsType because_Cache natural_numberEquality unionElimination applyEquality lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeEquality sqequalRule imageMemberEquality baseClosed instantiate independent_isectElimination productElimination independent_functionElimination voidElimination

Latex:
\mforall{}s:DSet.  \mforall{}a,a':|s|.  \mforall{}bs,bs':|s|  List.    ((a  =  a')  {}\mRightarrow{}  (bs  \mequiv{}(|s|)  bs')  {}\mRightarrow{}  ((bs  \mbackslash{}  a)  \mequiv{}(|s|)  (bs'  \mbackslash{}  a')))



Date html generated: 2019_10_16-PM-01_03_51
Last ObjectModification: 2018_10_08-AM-11_44_33

Theory : list_2


Home Index