Nuprl Lemma : not_mem_remove1

s:DSet. ∀a:|s|. ∀bs:|s| List.  ((¬↑(a ∈b bs))  ((bs a) bs ∈ (|s| List)))


Proof




Definitions occuring in Statement :  remove1: as a mem: a ∈b as list: List assert: b all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q assert: b ifthenelse: if then else fi  bfalse: ff cons: [a b] dset: DSet le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B infix_ap: y bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) true: True iff: ⇐⇒ Q rev_implies:  Q bor: p ∨bq
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases mem_nil_lemma remove1_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list set_car_wf istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le mem_cons_lemma remove1_cons_lemma nat_wf not_wf assert_wf mem_wf list_wf dset_wf nil_wf false_wf set_eq_wf uiff_transitivity equal-wf-T-base bool_wf equal_wf eqtt_to_assert assert_of_dset_eq testxxx_lemma true_wf iff_transitivity bnot_wf iff_weakening_uiff eqff_to_assert assert_of_bnot cons_wf squash_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality equalityElimination universeEquality imageMemberEquality

Latex:
\mforall{}s:DSet.  \mforall{}a:|s|.  \mforall{}bs:|s|  List.    ((\mneg{}\muparrow{}(a  \mmember{}\msubb{}  bs))  {}\mRightarrow{}  ((bs  \mbackslash{}  a)  =  bs))



Date html generated: 2019_10_16-PM-01_03_48
Last ObjectModification: 2018_10_08-AM-11_14_45

Theory : list_2


Home Index