Nuprl Lemma : before_imp_before_all

a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.
  ((↑before(k;map(λz.(fst(z));ps)))  (↑(∀bx(:|a|) ∈ map(λz.(fst(z));ps). (x <b k))))


Proof




Definitions occuring in Statement :  oalist: oal(a;b) before: before(u;ps) ball: ball map: map(f;as) assert: b pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] abdmonoid: AbDMon loset: LOSet set_blt: a <b b set_car: |p|
Definitions unfolded in proof :  dset_of_mon: g↓set dset_list: List dset_set: dset_set oalist: oal(a;b) pi1: fst(t) set_car: |p| mk_dset: mk_dset(T, eq) set_prod: s × t dset: DSet subtype_rel: A ⊆B abdmonoid: AbDMon qoset: QOSet poset: POSet{i} loset: LOSet uall: [x:A]. B[x] prop: member: t ∈ T implies:  Q all: x:A. B[x] squash: T sq_stable: SqStable(P) so_apply: x[s] so_lambda: λ2x.t[x] and: P ∧ Q cand: c∧ B uimplies: supposing a rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) top: Top infix_ap: y pi2: snd(t) grp_op: * guard: {T} so_apply: x[s1;s2] grp_car: |g| band_mon: <𝔹,∧b> so_lambda: λ2y.t[x; y]
Lemmas referenced :  assert_functionality_wrt_uiff cons_wf mon_htfor_wf band_mon_wf bool_wf list_wf sd_ordered_char mon_htfor_cons_lemma sd_ordered_cons_lemma assert_of_band sd_ordered_wf sq_stable_from_decidable ball_wf set_blt_wf decidable__assert assert_wf before_wf map_wf set_car_wf set_prod_wf dset_of_mon_wf oalist_wf dset_wf abdmonoid_wf loset_wf
Rules used in proof :  productElimination lambdaEquality sqequalRule applyEquality because_Cache hypothesis hypothesisEquality rename setElimination dependent_functionElimination thin isectElimination sqequalHypSubstitution lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination baseClosed imageMemberEquality introduction independent_functionElimination independent_pairFormation independent_isectElimination voidEquality voidElimination isect_memberEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.
    ((\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (x  <\msubb{}  k))))



Date html generated: 2016_05_16-AM-08_15_35
Last ObjectModification: 2016_01_16-PM-11_58_34

Theory : polynom_2


Home Index