Nuprl Lemma : before_imp_before_all
∀a:LOSet. ∀b:AbDMon. ∀k:|a|. ∀ps:|oal(a;b)|.
  ((↑before(k;map(λz.(fst(z));ps))) ⇒ (↑(∀bx(:|a|) ∈ map(λz.(fst(z));ps). (x <b k))))
Proof
Definitions occuring in Statement : 
oalist: oal(a;b), 
before: before(u;ps), 
ball: ball, 
map: map(f;as), 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
abdmonoid: AbDMon, 
loset: LOSet, 
set_blt: a <b b, 
set_car: |p|
Definitions unfolded in proof : 
dset_of_mon: g↓set, 
dset_list: s List, 
dset_set: dset_set, 
oalist: oal(a;b), 
pi1: fst(t), 
set_car: |p|, 
mk_dset: mk_dset(T, eq), 
set_prod: s × t, 
dset: DSet, 
subtype_rel: A ⊆r B, 
abdmonoid: AbDMon, 
qoset: QOSet, 
poset: POSet{i}, 
loset: LOSet, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
squash: ↓T, 
sq_stable: SqStable(P), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
and: P ∧ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
top: Top, 
infix_ap: x f y, 
pi2: snd(t), 
grp_op: *, 
guard: {T}, 
so_apply: x[s1;s2], 
grp_car: |g|, 
band_mon: <𝔹,∧b>, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
assert_functionality_wrt_uiff, 
cons_wf, 
mon_htfor_wf, 
band_mon_wf, 
bool_wf, 
list_wf, 
sd_ordered_char, 
mon_htfor_cons_lemma, 
sd_ordered_cons_lemma, 
assert_of_band, 
sd_ordered_wf, 
sq_stable_from_decidable, 
ball_wf, 
set_blt_wf, 
decidable__assert, 
assert_wf, 
before_wf, 
map_wf, 
set_car_wf, 
set_prod_wf, 
dset_of_mon_wf, 
oalist_wf, 
dset_wf, 
abdmonoid_wf, 
loset_wf
Rules used in proof : 
productElimination, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
because_Cache, 
hypothesis, 
hypothesisEquality, 
rename, 
setElimination, 
dependent_functionElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
lemma_by_obid, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
introduction, 
independent_functionElimination, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}k:|a|.  \mforall{}ps:|oal(a;b)|.
    ((\muparrow{}before(k;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  (\muparrow{}(\mforall{}\msubb{}x(:|a|)  \mmember{}  map(\mlambda{}z.(fst(z));ps).  (x  <\msubb{}  k))))
Date html generated:
2016_05_16-AM-08_15_35
Last ObjectModification:
2016_01_16-PM-11_58_34
Theory : polynom_2
Home
Index