Nuprl Lemma : oal_neg_right_inv

a:LOSet. ∀b:AbDGrp. ∀ps:|oal(a;b)|.  ((ps ++ (--ps)) 00 ∈ |oal(a;b)|)


Proof




Definitions occuring in Statement :  oal_neg: --ps oal_merge: ps ++ qs oal_nil: 00 oalist: oal(a;b) all: x:A. B[x] equal: t ∈ T abdgrp: AbDGrp loset: LOSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B abdgrp: AbDGrp abgrp: AbGrp grp: Group{i} abdmonoid: AbDMon dmon: DMon mon: Mon so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q sq_stable: SqStable(P) true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf set_car_wf oalist_wf subtype_rel_sets mon_wf inverse_wf grp_car_wf grp_op_wf grp_id_wf grp_inv_wf comm_wf eqfun_p_wf grp_eq_wf set_wf sq_stable__comm oal_merge_comm oal_neg_wf2 oal_nil_wf iff_weakening_equal oal_neg_left_inv abdgrp_wf loset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality dependent_functionElimination sqequalRule instantiate setEquality cumulativity setElimination rename because_Cache independent_isectElimination independent_functionElimination imageMemberEquality baseClosed natural_numberEquality productElimination

Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDGrp.  \mforall{}ps:|oal(a;b)|.    ((ps  ++  (--ps))  =  00)



Date html generated: 2017_10_01-AM-10_03_22
Last ObjectModification: 2017_03_03-PM-01_05_45

Theory : polynom_2


Home Index