Nuprl Lemma : eo-forward-E-subtype2
∀[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E]. ({e':E| (loc(e') = loc(e) ∈ Id)
⇒ e ≤loc e' } ⊆r E)
Proof
Definitions occuring in Statement :
eo-forward: eo.e
,
event-ordering+: EO+(Info)
,
es-le: e ≤loc e'
,
es-loc: loc(e)
,
es-E: E
,
Id: Id
,
subtype_rel: A ⊆r B
,
uall: ∀[x:A]. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
eo-forward-E,
Id_wf,
es-loc_wf,
es-le_wf,
es-E_wf,
event-ordering+_subtype,
event-ordering+_wf,
assert_elim,
es-dom_wf,
subtype_base_sq,
bool_wf,
bool_subtype_base,
assert_wf,
eqtt_to_assert,
bor_wf,
es-ble_wf,
bnot_wf,
eq_id_wf,
or_wf,
not_wf,
equal_wf,
decidable__equal_Id,
iff_transitivity,
iff_weakening_uiff,
assert_of_band,
assert_of_bor,
assert-es-ble,
assert_of_bnot,
assert-eq-id,
eqff_to_assert,
bool_cases_sqequal,
assert-bnot,
false_wf
\mforall{}[Info:Type]. \mforall{}[eo:EO+(Info)]. \mforall{}[e:E]. (\{e':E| (loc(e') = loc(e)) {}\mRightarrow{} e \mleq{}loc e' \} \msubseteq{}r E)
Date html generated:
2015_07_17-PM-00_02_22
Last ObjectModification:
2015_01_28-AM-00_41_20
Home
Index