Nuprl Lemma : eo-forward-E-subtype2

[Info:Type]. ∀[eo:EO+(Info)]. ∀[e:E].  ({e':E| (loc(e') loc(e) ∈ Id)  e ≤loc e' }  ⊆E)


Proof




Definitions occuring in Statement :  eo-forward: eo.e event-ordering+: EO+(Info) es-le: e ≤loc e'  es-loc: loc(e) es-E: E Id: Id subtype_rel: A ⊆B uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Lemmas :  eo-forward-E Id_wf es-loc_wf es-le_wf es-E_wf event-ordering+_subtype event-ordering+_wf assert_elim es-dom_wf subtype_base_sq bool_wf bool_subtype_base assert_wf eqtt_to_assert bor_wf es-ble_wf bnot_wf eq_id_wf or_wf not_wf equal_wf decidable__equal_Id iff_transitivity iff_weakening_uiff assert_of_band assert_of_bor assert-es-ble assert_of_bnot assert-eq-id eqff_to_assert bool_cases_sqequal assert-bnot false_wf
\mforall{}[Info:Type].  \mforall{}[eo:EO+(Info)].  \mforall{}[e:E].    (\{e':E|  (loc(e')  =  loc(e))  {}\mRightarrow{}  e  \mleq{}loc  e'  \}    \msubseteq{}r  E)



Date html generated: 2015_07_17-PM-00_02_22
Last ObjectModification: 2015_01_28-AM-00_41_20

Home Index