{ [Info:Type]. [P:es:EO+(Info)  E  ].
    p:es:EO+(Info). e:E.  Dec(P[es;e])
      [A,B:Type].
        Ia:EClass(A). Ib:EClass(B).
          ((Singlevalued(Ia)  Singlevalued(Ib))
           (g1:es:EO+(Info)  E(Ib)  E. q:es:EO+(Info). e:E.
                                                   Dec((e  Ib)
                                                   c P[es;g1 es e]).
              es:EO+(Info).
                [Q,R:E  E  ].
                  ((x,y:E.  ((Q x y)  (P[es;x]  P[es;y])))
                   (f:E(Ia)  B. g2:E(Ib)  E.
                        (g1 es glues (Ia|p):Q f (Ib|q):R
                         g2 glues (Ia|p):Q f (Ib|q):R
                         [e.P[es;g1 es e]? g1 es : g2] glues Ia:Q f 
                           Ib:R))))) }

{ Proof }



Definitions occuring in Statement :  Q-R-glues: g glues Ia:Qa f Ib:Rb es-interface-co-restrict: (I|p) es-interface-restrict: (I|p) es-E-interface: E(X) sv-class: Singlevalued(X) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) conditional: [P? f : g] es-E: E compose: f o g assert: b decidable: Dec(P) uall: [x:A]. B[x] cand: A c B prop: so_apply: x[s1;s2] all: x:A. B[x] iff: P  Q implies: P  Q and: P  Q apply: f a lambda: x.A[x] function: x:A  B[x] universe: Type
Definitions :  compose: f o g conditional: [P? f : g] Knd: Knd es-prior-interface: prior(X) exists: x:A. B[x] is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) sq_stable: SqStable(P) so_apply: x[s] eq_knd: a = b l_member: (x  l) tag-by: zT record: record(x.T[x]) fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B fpf-sub: f  g map-class: (f[v] where v from X) deq: EqDecider(T) es-filter-image: f[X] es-tagged-true-class: Tagged_tt(X) ma-state: State(ds) fpf-dom: x  dom(f) pair: <a, b> squash: T es-interface-at: X@i class-program: ClassProgram(T) es-empty-interface: Empty cond-class: [X?Y] list: type List fpf-cap: f(x)?z intensional-universe: IType guard: {T} btrue: tt sq_type: SQType(T) bool: true: True eclass-val: X(e) inject: Inj(A;B;f) Q-R-pre-preserving: f is Q-R-pre-preserving on P interface_predicate_set: interface_predicate_set{interface_predicate_set_compseq_tag_def:o}(X; es) es-interface-predicate: {I} fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b uiff: uiff(P;Q) uimplies: b supposing a suptype: suptype(S; T) rev_implies: P  Q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] in-eclass: e  X void: Void false: False le: A  B bag: bag(T) lambda: x.A[x] not: A subtype: S  T eq_atom: eq_atom$n(x;y) atom: Atom es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ equal: s = t member: t  T union: left + right or: P  Q es-causle: e c e' weak-antecedent-function: Q ==f== P weak-antecedent-surjection: Q = f== P eclass: EClass(A[eo; e]) sv-class: Singlevalued(X) assert: b product: x:A  B[x] cand: A c B decidable: Dec(P) universe: Type prop: apply: f a so_apply: x[s1;s2] iff: P  Q top: Top event-ordering+: EO+(Info) event_ordering: EO isect: x:A. B[x] uall: [x:A]. B[x] so_lambda: x.t[x] all: x:A. B[x] implies: P  Q Q-R-glues: g glues Ia:Qa f Ib:Rb so_lambda: x y.t[x; y] function: x:A  B[x] MaAuto: Error :MaAuto,  RepeatFor: Error :RepeatFor,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  Auto: Error :Auto,  es-E-interface: E(X) es-interface-co-restrict: (I|p) subtype_rel: A r B and: P  Q AssertBY: Error :AssertBY,  es-interface-restrict: (I|p) es-E: E Complete: Error :Complete,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  Repeat: Error :Repeat,  tactic: Error :tactic,  es-interface-disjoint: X  Y = 0 eclass-compose2: eclass-compose2(f;X;Y) rel-restriction: R|P rel_or: R1  R2 rel_equivalent: R1  R2 rev_uimplies: rev_uimplies(P;Q) infix_ap: x f y it: bool-decider: bool-decider(b) inr: inr x  inl: inl x  branch: if p:P then A[p] else B fi  limited-type: LimitedType base: Base label: ...$L... t
Lemmas :  es-E-interface-subtype rel-restriction_wf rel_equivalent_wf rel_or_wf Q-R-glues_functionality es-interface-restrict-conditional rev_implies_wf bool-decider_wf assert_witness es-is-interface-restrict es-is-interface-co-restrict es-interface-restrict-disjoint es-E-interface-conditional-subtype cond-class_wf Q-R-glues-conditional2 ext-eq_inversion is-interface-conditional-implies es-interface-disjoint_wf not_wf decidable_wf assert_wf event-ordering+_wf uall_wf es-E_wf iff_wf es-E-interface_wf Q-R-glues_wf es-interface-restrict_wf es-interface-co-restrict_wf eclass_wf sv-class_wf es-base-E_wf subtype_rel_self event-ordering+_inc member_wf es-interface-top in-eclass_wf top_wf subtype_rel_wf es-interface-predicate_wf weak-antecedent-surjection_wf Q-R-pre-preserving_wf inject_wf eclass-val_wf false_wf ifthenelse_wf true_wf bool_wf subtype_base_sq bool_subtype_base assert_elim intensional-universe_wf subtype_rel_function squash_wf subtype_rel_set subtype_rel_sets sq_stable__assert bag_wf es-E-interface-restrict es-E-interface-co-restrict

\mforall{}[Info:Type].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}p:\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(P[es;e])
        \mforall{}[A,B:Type].
            \mforall{}Ia:EClass(A).  \mforall{}Ib:EClass(B).
                ((Singlevalued(Ia)  \mwedge{}  Singlevalued(Ib))
                {}\mRightarrow{}  (\mforall{}g1:es:EO+(Info)  {}\mrightarrow{}  E(Ib)  {}\mrightarrow{}  E.  \mforall{}q:\mforall{}es:EO+(Info).  \mforall{}e:E.
                                                                                                  Dec((\muparrow{}e  \mmember{}\msubb{}  Ib)  c\mwedge{}  P[es;g1  es  e]).  \mforall{}es:EO+(Info).
                            \mforall{}[Q,R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].
                                ((\mforall{}x,y:E.    ((Q  x  y)  {}\mRightarrow{}  (P[es;x]  \mLeftarrow{}{}\mRightarrow{}  P[es;y])))
                                {}\mRightarrow{}  (\mforall{}f:E(Ia)  {}\mrightarrow{}  B.  \mforall{}g2:E(Ib)  {}\mrightarrow{}  E.
                                            (g1  es  glues  (Ia|p):Q  {}{}f{}\mrightarrow{}  (Ib|q):R
                                            {}\mRightarrow{}  g2  glues  (Ia|\mneg{}p):Q  {}{}f{}\mrightarrow{}  (Ib|\mneg{}q):R
                                            {}\mRightarrow{}  [\mlambda{}e.P[es;g1  es  e]?  g1  es  :  g2]  glues  Ia:Q  {}{}f{}\mrightarrow{}  Ib:R)))))


Date html generated: 2011_08_16-PM-05_58_51
Last ObjectModification: 2011_06_20-AM-01_41_18

Home Index