{ [Info:Type]. [B:{B:Type| valueall-type(B)} ].
  [Ps:eclass-program{i:l}(Info) List].
    [F:Id  k:||Ps||  bag(eclass-program-type(Ps[k]))  bag(B)]
      defined-class(simple-loc-comb-program(F;B;Ps))
      = F|Loc; k.defined-class(Ps[k])| 
      supposing x:Id. ((F x (k.{})) = {}) 
    supposing 0 < ||Ps|| }

{ Proof }



Definitions occuring in Statement :  simple-loc-comb-program: simple-loc-comb-program(F;B;Ps) defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) eclass-program: eclass-program{i:l}(Info) simple-loc-comb: F|Loc; Xs| eclass: EClass(A[eo; e]) Id: Id select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] less_than: a < b set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  es-le-before: loc(e) es-info: info(e) pi1: fst(t) fpf-ap: f(x) null-df-program: null-df-program(B) parallel-df-program: parallel-df-program(B;F;dfps) df-program-meaning: df-program-meaning(dfp) data-stream: data-stream(P;L) last: last(L) lt_int: i <z j le_int: i z j bfalse: ff btrue: tt deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) name_eq: name_eq(x;y) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q es-loc: loc(e) deq-member: deq-member(eq;x;L) bnot: b unit: Unit union: left + right fpf-dom: x  dom(f) fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) dataflow-history-val: dataflow-history-val(es;e;x.P[x]) fpf-cap: f(x)?z bool: listp: A List combination: Combination(n;T) rev_implies: P  Q iff: P  Q so_lambda: x.t[x] df-program-type: df-program-type(dfp) dataflow-program: DataflowProgram(A) record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) atom: Atom$n decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ nat: cand: A c B exists: x:A. B[x] event_ordering: EO es-E: E event-ordering+: EO+(Info) spread: spread def dataflow-set-class: dataflow-set-class(x.P[x]) fpf-single: x : v mk_fpf: mk_fpf(L;f) fpf-join: f  g lelt: i  j < k void: Void false: False real: rationals: subtype: S  T int: empty-bag: {} limited-type: LimitedType top: Top apply: f a pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] axiom: Ax simple-loc-comb: F|Loc; Xs| simple-loc-comb-program: simple-loc-comb-program(F;B;Ps) defined-class: defined-class(prg) eclass: EClass(A[eo; e]) eclass-program-type: eclass-program-type(prg) equal: s = t valueall-type: valueall-type(T) eclass-program: eclass-program{i:l}(Info) list: type List uimplies: b supposing a prop: less_than: a < b uall: [x:A]. B[x] isect: x:A. B[x] member: t  T set: {x:A| B[x]}  universe: Type function: x:A  B[x] bag: bag(T) select: l[i] eclass-program-flows: eclass-program-flows(p) fpf-domain: fpf-domain(f) Id: Id lambda: x.A[x] map: map(f;as) id-deq: IdDeq union-list2: union-list2(eq;ll) l_member: (x  l) implies: P  Q length: ||as|| natural_number: $n int_seg: {i..j} all: x:A. B[x] proper-iseg: L1 < L2 iseg: l1  l2 multiply: n * m gt: i > j divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B cmp-le: cmp-le(cmp;x;y) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) null: null(as) es-le: e loc e'  tag-by: zT record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] stream: stream(A) dataflow: dataflow(A;B) b-union: A  B intensional-universe: IType ma-state: State(ds) class-program: ClassProgram(T) fpf-sub: f  g classrel: v  X(e) squash: T sq_stable: SqStable(P) es-E-interface: E(X) grp_car: |g| suptype: suptype(S; T) sqequal: s ~ t inr: inr x  it: eqof: eqof(d) true: True cons: [car / cdr] nil: [] deq: EqDecider(T) sq_type: SQType(T) so_apply: x[s] or: P  Q guard: {T} filter: filter(P;l) atom: Atom es-base-E: es-base-E(es) token: "$token" MaAuto: Error :MaAuto,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  in-eclass: e  X eq_knd: a = b eq_bool: p =b q eq_int: (i = j) set_blt: a < b grp_blt: a < b dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) D: Error :D,  label: ...$L... t tl: tl(l) hd: hd(l) es-before: before(e) append: as @ bs Unfold: Error :Unfold,  THENM: Error :THENM,  corec: corec(T.F[T]) rcv: rcv(l,tg) locl: locl(a) Knd: Knd primrec: primrec(n;b;c) es-interface-prior-vals: X(e)
Lemmas :  last-map data-stream-null-df-program null-map es-le-before_wf2 es-le_wf es-le-before-not-null subtype_base_sq bool_subtype_base bfalse_wf length-data-stream data-stream_wf non_null_iff_length last_wf subtype_rel_list df-program-meaning_wf df-program-meaning_wf_null dataflow_wf es-locl_wf es-before_wf3 append_wf es-before_wf length_append length_cons length_nil map_length non_neg_length ge_wf uiff_transitivity select-map null-df-program_wf subtype_rel_self es-base-E_wf fpf-ap_wf pi1_wf_top ifthenelse_wf last-stream-parallel-df-program-meaning false_wf fpf-dom_wf true_wf member-fpf-dom unit_wf it_wf length-map le_wf sq_stable__subtype_rel subtype_rel_function intensional-universe_wf nat_properties int_seg_properties subtype_rel_dep_function squash_wf subtype_rel_bag permutation_wf pos_length2 member_null sq_stable__and sq_stable_from_decidable decidable__lt sq_stable__equal pos-length equal-nil-sq-nil l_member_length eclass-program-type_wf select_wf eclass-program_wf bag_wf length_wf1 int_seg_wf Id_wf empty-bag_wf defined-class_wf simple-loc-comb-program_wf eclass_wf valueall-type_wf event-ordering+_wf es-E_wf event-ordering+_inc l_member_wf nat_wf fpf-domain_wf eclass-program-flows_wf dataflow-program_wf fpf_wf top_wf member_wf subtype_rel_wf fpf-trivial-subtype-top df-program-type_wf member-union-list2 id-deq_wf map_wf member_map length_wf_nat select_member union-list2_wf bool_wf es-loc_wf iff_transitivity assert_wf iff_weakening_uiff eqtt_to_assert assert-deq-member not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_iff bnot_wf deq-member_wf es-info_wf es-le-before_wf

\mforall{}[Info:Type].  \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[Ps:eclass-program\{i:l\}(Info)  List].
    \mforall{}[F:Id  {}\mrightarrow{}  k:\mBbbN{}||Ps||  {}\mrightarrow{}  bag(eclass-program-type(Ps[k]))  {}\mrightarrow{}  bag(B)]
        defined-class(simple-loc-comb-program(F;B;Ps))  =  F|Loc;  \mlambda{}k.defined-class(Ps[k])| 
        supposing  \mforall{}x:Id.  ((F  x  (\mlambda{}k.\{\}))  =  \{\}) 
    supposing  0  <  ||Ps||


Date html generated: 2011_08_16-PM-06_24_44
Last ObjectModification: 2011_06_20-AM-01_52_08

Home Index