{ 
[Info:Type]. 
[B:{B:Type| valueall-type(B)} ].
  
[Ps:eclass-program{i:l}(Info) List].
    
[F:Id 
 k:
||Ps|| 
 bag(eclass-program-type(Ps[k])) 
 bag(B)]
      defined-class(simple-loc-comb-program(F;B;Ps))
      = F|Loc; 
k.defined-class(Ps[k])| 
      supposing 
x:Id. ((F x (
k.{})) = {}) 
    supposing 0 < ||Ps|| }
{ Proof }
Definitions occuring in Statement : 
simple-loc-comb-program: simple-loc-comb-program(F;B;Ps), 
defined-class: defined-class(prg), 
eclass-program-type: eclass-program-type(prg), 
eclass-program: eclass-program{i:l}(Info), 
simple-loc-comb: F|Loc; Xs|, 
eclass: EClass(A[eo; e]), 
Id: Id, 
select: l[i], 
length: ||as||, 
int_seg: {i..j
}, 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
all:
x:A. B[x], 
less_than: a < b, 
set: {x:A| B[x]} , 
apply: f a, 
lambda:
x.A[x], 
function: x:A 
 B[x], 
list: type List, 
natural_number: $n, 
universe: Type, 
equal: s = t, 
empty-bag: {}, 
bag: bag(T), 
valueall-type: valueall-type(T)
Definitions : 
es-le-before:
loc(e), 
es-info: info(e), 
pi1: fst(t), 
fpf-ap: f(x), 
null-df-program: null-df-program(B), 
parallel-df-program: parallel-df-program(B;F;dfps), 
df-program-meaning: df-program-meaning(dfp), 
data-stream: data-stream(P;L), 
last: last(L), 
lt_int: i <z j, 
le_int: i 
z j, 
bfalse: ff, 
btrue: tt, 
deq-disjoint: deq-disjoint(eq;as;bs), 
deq-all-disjoint: deq-all-disjoint(eq;ass;bs), 
name_eq: name_eq(x;y), 
eq_id: a = b, 
eq_lnk: a = b, 
es-eq-E: e = e', 
es-bless: e <loc e', 
es-ble: e 
loc e', 
bimplies: p 

 q, 
band: p 
 q, 
bor: p 
q, 
es-loc: loc(e), 
deq-member: deq-member(eq;x;L), 
bnot: 
b, 
unit: Unit, 
union: left + right, 
fpf-dom: x 
 dom(f), 
fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d), 
dataflow-history-val: dataflow-history-val(es;e;x.P[x]), 
fpf-cap: f(x)?z, 
bool:
, 
listp: A List
, 
combination: Combination(n;T), 
rev_implies: P 
 Q, 
iff: P 

 Q, 
so_lambda: 
x.t[x], 
df-program-type: df-program-type(dfp), 
dataflow-program: DataflowProgram(A), 
record-select: r.x, 
eq_atom: x =a y, 
eq_atom: eq_atom$n(x;y), 
atom: Atom$n, 
decide: case b of inl(x) => s[x] | inr(y) => t[y], 
ifthenelse: if b then t else f fi , 
assert:
b, 
dep-isect: Error :dep-isect, 
record+: record+, 
nat:
, 
cand: A c
 B, 
exists:
x:A. B[x], 
event_ordering: EO, 
es-E: E, 
event-ordering+: EO+(Info), 
spread: spread def, 
dataflow-set-class: dataflow-set-class(x.P[x]), 
fpf-single: x : v, 
mk_fpf: mk_fpf(L;f), 
fpf-join: f 
 g, 
lelt: i 
 j < k, 
void: Void, 
false: False, 
real:
, 
rationals:
, 
subtype: S 
 T, 
int:
, 
empty-bag: {}, 
limited-type: LimitedType, 
top: Top, 
apply: f a, 
pair: <a, b>, 
fpf: a:A fp-> B[a], 
strong-subtype: strong-subtype(A;B), 
le: A 
 B, 
ge: i 
 j , 
not:
A, 
product: x:A 
 B[x], 
and: P 
 Q, 
uiff: uiff(P;Q), 
subtype_rel: A 
r B, 
so_lambda: 
x y.t[x; y], 
axiom: Ax, 
simple-loc-comb: F|Loc; Xs|, 
simple-loc-comb-program: simple-loc-comb-program(F;B;Ps), 
defined-class: defined-class(prg), 
eclass: EClass(A[eo; e]), 
eclass-program-type: eclass-program-type(prg), 
equal: s = t, 
valueall-type: valueall-type(T), 
eclass-program: eclass-program{i:l}(Info), 
list: type List, 
uimplies: b supposing a, 
prop:
, 
less_than: a < b, 
uall:
[x:A]. B[x], 
isect:
x:A. B[x], 
member: t 
 T, 
set: {x:A| B[x]} , 
universe: Type, 
function: x:A 
 B[x], 
bag: bag(T), 
select: l[i], 
eclass-program-flows: eclass-program-flows(p), 
fpf-domain: fpf-domain(f), 
Id: Id, 
lambda:
x.A[x], 
map: map(f;as), 
id-deq: IdDeq, 
union-list2: union-list2(eq;ll), 
l_member: (x 
 l), 
implies: P 
 Q, 
length: ||as||, 
natural_number: $n, 
int_seg: {i..j
}, 
all:
x:A. B[x], 
proper-iseg: L1 < L2, 
iseg: l1 
 l2, 
multiply: n * m, 
gt: i > j, 
divides: b | a, 
assoced: a ~ b, 
set_leq: a 
 b, 
set_lt: a <p b, 
grp_lt: a < b, 
l_contains: A 
 B, 
cmp-le: cmp-le(cmp;x;y), 
reducible: reducible(a), 
prime: prime(a), 
l_exists: (
x
L. P[x]), 
l_all: (
x
L.P[x]), 
fun-connected: y is f*(x), 
qle: r 
 s, 
qless: r < s, 
q-rel: q-rel(r;x), 
sq_exists:
x:{A| B[x]}, 
i-finite: i-finite(I), 
i-closed: i-closed(I), 
p-outcome: Outcome, 
fset-member: a 
 s, 
f-subset: xs 
 ys, 
fset-closed: (s closed under fs), 
l_disjoint: l_disjoint(T;l1;l2), 
cs-not-completed: in state s, a has not completed inning i, 
cs-archived: by state s, a archived v in inning i, 
cs-passed: by state s, a passed inning i without archiving a value, 
cs-inning-committed: in state s, inning i has committed v, 
cs-inning-committable: in state s, inning i could commit v , 
cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i, 
cs-precondition: state s may consider v in inning i, 
infix_ap: x f y, 
es-causl: (e < e'), 
es-locl: (e <loc e'), 
es-causle: e c
 e', 
existse-before:
e<e'.P[e], 
existse-le:
e
e'.P[e], 
alle-lt:
e<e'.P[e], 
alle-le:
e
e'.P[e], 
alle-between1:
e
[e1,e2).P[e], 
existse-between1:
e
[e1,e2).P[e], 
alle-between2:
e
[e1,e2].P[e], 
existse-between2:
e
[e1,e2].P[e], 
existse-between3:
e
(e1,e2].P[e], 
es-fset-loc: i 
 locs(s), 
es-r-immediate-pred: es-r-immediate-pred(es;R;e';e), 
same-thread: same-thread(es;p;e;e'), 
collect-event: collect-event(es;X;n;v.num[v];L.P[L];e), 
cut-order: a 
(X;f) b, 
path-goes-thru: x-f*-y thru i, 
decidable: Dec(P), 
uni_sat: a = !x:T. Q[x], 
inv_funs: InvFuns(A;B;f;g), 
inject: Inj(A;B;f), 
eqfun_p: IsEqFun(T;eq), 
refl: Refl(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uconnex: uconnex(T; x,y.R[x; y]), 
coprime: CoPrime(a,b), 
ident: Ident(T;op;id), 
assoc: Assoc(T;op), 
comm: Comm(T;op), 
inverse: Inverse(T;op;id;inv), 
bilinear: BiLinear(T;pl;tm), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
action_p: IsAction(A;x;e;S;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
cancel: Cancel(T;S;op), 
monot: monot(T;x,y.R[x; y];f), 
monoid_p: IsMonoid(T;op;id), 
group_p: IsGroup(T;op;id;inv), 
monoid_hom_p: IsMonHom{M1,M2}(f), 
grp_leq: a 
 b, 
integ_dom_p: IsIntegDom(r), 
prime_ideal_p: IsPrimeIdeal(R;P), 
no_repeats: no_repeats(T;l), 
value-type: value-type(T), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
bag-member: bag-member(T;x;bs), 
req: x = y, 
rnonneg: rnonneg(r), 
rleq: x 
 y, 
i-member: r 
 I, 
partitions: partitions(I;p), 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
null: null(as), 
es-le: e 
loc e' , 
tag-by: z
T, 
record: record(x.T[x]), 
fset: FSet{T}, 
isect2: T1 
 T2, 
permutation: permutation(T;L1;L2), 
quotient: x,y:A//B[x; y], 
stream: stream(A), 
dataflow: dataflow(A;B), 
b-union: A 
 B, 
intensional-universe: IType, 
ma-state: State(ds), 
class-program: ClassProgram(T), 
fpf-sub: f 
 g, 
classrel: v 
 X(e), 
squash:
T, 
sq_stable: SqStable(P), 
es-E-interface: E(X), 
grp_car: |g|, 
suptype: suptype(S; T), 
sqequal: s ~ t, 
inr: inr x , 
it:
, 
eqof: eqof(d), 
true: True, 
cons: [car / cdr], 
nil: [], 
deq: EqDecider(T), 
sq_type: SQType(T), 
so_apply: x[s], 
or: P 
 Q, 
guard: {T}, 
filter: filter(P;l), 
atom: Atom, 
es-base-E: es-base-E(es), 
token: "$token", 
MaAuto: Error :MaAuto, 
Auto: Error :Auto, 
CollapseTHENA: Error :CollapseTHENA, 
CollapseTHEN: Error :CollapseTHEN, 
tactic: Error :tactic, 
in-eclass: e 
 X, 
eq_knd: a = b, 
eq_bool: p =b q, 
eq_int: (i =
 j), 
set_blt: a <
 b, 
grp_blt: a <
 b, 
dcdr-to-bool: [d]
, 
bl-all: (
x
L.P[x])_b, 
bl-exists: (
x
L.P[x])_b, 
b-exists: (
i<n.P[i])_b, 
eq_type: eq_type(T;T'), 
qeq: qeq(r;s), 
q_less: q_less(r;s), 
q_le: q_le(r;s), 
D: Error :D, 
label: ...$L... t, 
tl: tl(l), 
hd: hd(l), 
es-before: before(e), 
append: as @ bs, 
Unfold: Error :Unfold, 
THENM: Error :THENM, 
corec: corec(T.F[T]), 
rcv: rcv(l,tg), 
locl: locl(a), 
Knd: Knd, 
primrec: primrec(n;b;c), 
es-interface-prior-vals: X(
e)
Lemmas : 
last-map, 
data-stream-null-df-program, 
null-map, 
es-le-before_wf2, 
es-le_wf, 
es-le-before-not-null, 
subtype_base_sq, 
bool_subtype_base, 
bfalse_wf, 
length-data-stream, 
data-stream_wf, 
non_null_iff_length, 
last_wf, 
subtype_rel_list, 
df-program-meaning_wf, 
df-program-meaning_wf_null, 
dataflow_wf, 
es-locl_wf, 
es-before_wf3, 
append_wf, 
es-before_wf, 
length_append, 
length_cons, 
length_nil, 
map_length, 
non_neg_length, 
ge_wf, 
uiff_transitivity, 
select-map, 
null-df-program_wf, 
subtype_rel_self, 
es-base-E_wf, 
fpf-ap_wf, 
pi1_wf_top, 
ifthenelse_wf, 
last-stream-parallel-df-program-meaning, 
false_wf, 
fpf-dom_wf, 
true_wf, 
member-fpf-dom, 
unit_wf, 
it_wf, 
length-map, 
le_wf, 
sq_stable__subtype_rel, 
subtype_rel_function, 
intensional-universe_wf, 
nat_properties, 
int_seg_properties, 
subtype_rel_dep_function, 
squash_wf, 
subtype_rel_bag, 
permutation_wf, 
pos_length2, 
member_null, 
sq_stable__and, 
sq_stable_from_decidable, 
decidable__lt, 
sq_stable__equal, 
pos-length, 
equal-nil-sq-nil, 
l_member_length, 
eclass-program-type_wf, 
select_wf, 
eclass-program_wf, 
bag_wf, 
length_wf1, 
int_seg_wf, 
Id_wf, 
empty-bag_wf, 
defined-class_wf, 
simple-loc-comb-program_wf, 
eclass_wf, 
valueall-type_wf, 
event-ordering+_wf, 
es-E_wf, 
event-ordering+_inc, 
l_member_wf, 
nat_wf, 
fpf-domain_wf, 
eclass-program-flows_wf, 
dataflow-program_wf, 
fpf_wf, 
top_wf, 
member_wf, 
subtype_rel_wf, 
fpf-trivial-subtype-top, 
df-program-type_wf, 
member-union-list2, 
id-deq_wf, 
map_wf, 
member_map, 
length_wf_nat, 
select_member, 
union-list2_wf, 
bool_wf, 
es-loc_wf, 
iff_transitivity, 
assert_wf, 
iff_weakening_uiff, 
eqtt_to_assert, 
assert-deq-member, 
not_wf, 
eqff_to_assert, 
assert_of_bnot, 
not_functionality_wrt_iff, 
bnot_wf, 
deq-member_wf, 
es-info_wf, 
es-le-before_wf
\mforall{}[Info:Type].  \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[Ps:eclass-program\{i:l\}(Info)  List].
    \mforall{}[F:Id  {}\mrightarrow{}  k:\mBbbN{}||Ps||  {}\mrightarrow{}  bag(eclass-program-type(Ps[k]))  {}\mrightarrow{}  bag(B)]
        defined-class(simple-loc-comb-program(F;B;Ps))  =  F|Loc;  \mlambda{}k.defined-class(Ps[k])| 
        supposing  \mforall{}x:Id.  ((F  x  (\mlambda{}k.\{\}))  =  \{\}) 
    supposing  0  <  ||Ps||
Date html generated:
2011_08_16-PM-06_24_44
Last ObjectModification:
2011_06_20-AM-01_52_08
Home
Index