{ [M:Type  Type]
    S0:System(P.M[P]). r:pRunType(P.M[P]). e1,e2:runEvents(r).
      (((run-event-local-pred(r;e2) = run-event-local-pred(r;e1))
          (run-event-interval(r;e1;e2) = [e2]))
          (e:runEvents(r)
             ((run-event-step(e) < run-event-step(e2))
              (run-event-step(e1)  run-event-step(e))
              ((run-event-loc(e1) = run-event-loc(e))
                (run-event-local-pred(r;e2) = (inl e )))
              (run-event-interval(r;e1;e2)
               = (run-event-interval(r;e1;e) @ [e2]))))) supposing 
         ((run-event-step(e1)  run-event-step(e2)) and 
         (run-event-loc(e1) = run-event-loc(e2))) }

{ Proof }



Definitions occuring in Statement :  run-event-local-pred: run-event-local-pred(r;e) run-event-interval: run-event-interval(r;e1;e2) run-event-step: run-event-step(e) run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) System: System(P.M[P]) Id: Id append: as @ bs uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] le: A  B all: x:A. B[x] exists: x:A. B[x] or: P  Q and: P  Q unit: Unit less_than: a < b function: x:A  B[x] inl: inl x  union: left + right cons: [car / cdr] nil: [] list: type List universe: Type equal: s = t
Definitions :  limited-type: LimitedType strong-subtype: strong-subtype(A;B) tl: tl(l) hd: hd(l) decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b ldag: LabeledDAG(T) ge: i  j  uiff: uiff(P;Q) subtype_rel: A r B exists: x:A. B[x] unit: Unit list: type List product: x:A  B[x] and: P  Q apply: f a so_apply: x[s] set: {x:A| B[x]}  real: grp_car: |g| subtype: S  T int: nat: run-event-step: run-event-step(e) less_than: a < b lambda: x.A[x] void: Void false: False implies: P  Q not: A le: A  B uall: [x:A]. B[x] universe: Type all: x:A. B[x] function: x:A  B[x] so_lambda: x.t[x] prop: uimplies: b supposing a isect: x:A. B[x] or: P  Q union: left + right axiom: Ax Id: Id run-event-loc: run-event-loc(e) runEvents: runEvents(r) pRunType: pRunType(T.M[T]) member: t  T equal: s = t System: System(P.M[P]) guard: {T} atom: Atom sq_type: SQType(T) atom: Atom$n bool: true: True is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) run-event-local-pred: run-event-local-pred(r;e) run-event-interval: run-event-interval(r;e1;e2) run-event-history: run-event-history(r;e) let: let sqequal: s ~ t CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  is-run-event: is-run-event(r;t;x) AssertBY: Error :AssertBY,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic,  eq_bool: p =b q quotient: x,y:A//B[x; y] has-value: has-value(a) callbyvalue: callbyvalue bfalse: ff iff: P  Q le_int: i z j eq_int: (i = j) eq_atom: x =a y set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_str: Error :eq_str,  eq_id: a = b eq_lnk: a = b es-eq-E: e = e' bimplies: p  q bor: p q lt_int: i <z j bnot: b btrue: tt listp: A List combination: Combination(n;T) map: map(f;as) length: ||as|| select: l[i] l_all: (xL.P[x]) filter: filter(P;l) spread: spread def eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] lelt: i  j < k pMsg: pMsg(P.M[P]) rationals: l_member: (x  l) cand: A c B top: Top band: p  q append: as @ bs inl: inl x  last: last(L) inr: inr x  it: null: null(as) Repeat: Error :Repeat,  RepUR: Error :RepUR,  Try: Error :Try,  MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  nil: [] cons: [car / cdr] natural_number: $n add: n + m from-upto: [n, m) pair: <a, b> mapfilter: mapfilter(f;P;L) pi2: snd(t) pi1: fst(t) int_seg: {i..j} ycomb: Y list_ind: list_ind def intensional-universe: IType es-E-interface: E(X) eq_knd: a = b IdLnk: IdLnk Knd: Knd labeled-graph: LabeledGraph(T) dep-isect: Error :dep-isect,  fpf-dom: x  dom(f) rev_implies: P  Q Complete: Error :Complete,  no_repeats: no_repeats(T;l) prime_ideal_p: IsPrimeIdeal(R;P) integ_dom_p: IsIntegDom(r) grp_leq: a  b monoid_hom_p: IsMonHom{M1,M2}(f) group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) fun_thru_2op: FunThru2op(A;B;opa;opb;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) bilinear: BiLinear(T;pl;tm) inverse: Inverse(T;op;id;inv) comm: Comm(T;op) assoc: Assoc(T;op) ident: Ident(T;op;id) coprime: CoPrime(a,b) connex: Connex(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) eqfun_p: IsEqFun(T;eq) inv_funs: InvFuns(A;B;f;g) uni_sat: a = !x:T. Q[x] path-goes-thru: x-f*-y thru i cut-order: a (X;f) b collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-causle: e c e' es-le: e loc e'  es-locl: (e <loc e') es-causl: (e < e') cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i fset-closed: (s closed under fs) f-subset: xs  ys fset-member: a  s p-outcome: Outcome q-rel: q-rel(r;x) qless: r < s qle: r  s fun-connected: y is f*(x) l_disjoint: l_disjoint(T;l1;l2) prime: prime(a) reducible: reducible(a) inject: Inj(A;B;f) l_contains: A  B l_exists: (xL. P[x]) grp_lt: a < b set_lt: a <p b set_leq: a  b assoced: a ~ b divides: b | a decidable: Dec(P) subtract: n - m minus: -n qabs: |r| es-interface-prior-vals: X(e) i-finite: i-finite(I) i-closed: i-closed(I) lg-edge: lg-edge(g;a;b)
Lemmas :  append-nil last_append mapfilter-singleton rev_implies_wf iff_wf iff_transitivity decidable__le equal-nil-sq-nil guard_wf nat_sq nat_ind_tp not_functionality_wrt_iff ge_wf decidable__assert sq_stable_from_decidable squash_wf last_wf pos_length2 bfalse_wf subtype_rel_wf append_wf it_wf list-equal-set2 sq_stable_wf list-equal-set pi1_wf intensional-universe_wf uiff_inversion nat_properties from-upto_wf mapfilter_wf top_wf l_member_wf member_wf mapfilter-append null_append from-upto-split bool_wf int_seg_wf pi1_wf_top pi2_wf list-subtype list-set-type2 l_all_wf product_subtype_base set_subtype_base int_subtype_base filter_wf map_wf length_wf1 length_wf_nat bool_subtype_base assert_elim iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int le_int_wf bnot_wf lt_int_wf list_subtype_base rational-has-value int_inc assert_of_null not_wf assert_of_bnot not_functionality_wrt_uiff null_wf3 assert_wf false_wf ifthenelse_wf true_wf sq_stable__assert is-run-event_wf subtype_base_sq atom2_subtype_base unit_wf le_wf run-event-step_wf nat_wf Id_wf run-event-loc_wf runEvents_wf pRunType_wf System_wf

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}S0:System(P.M[P]).  \mforall{}r:pRunType(P.M[P]).  \mforall{}e1,e2:runEvents(r).
        (((run-event-local-pred(r;e2)  =  run-event-local-pred(r;e1))
              \mwedge{}  (run-event-interval(r;e1;e2)  =  [e2]))
              \mvee{}  (\mexists{}e:runEvents(r)
                      ((run-event-step(e)  <  run-event-step(e2))
                      \mwedge{}  (run-event-step(e1)  \mleq{}  run-event-step(e))
                      \mwedge{}  ((run-event-loc(e1)  =  run-event-loc(e))  \mwedge{}  (run-event-local-pred(r;e2)  =  (inl  e  )))
                      \mwedge{}  (run-event-interval(r;e1;e2)  =  (run-event-interval(r;e1;e)  @  [e2])))))  supposing 
              ((run-event-step(e1)  \mleq{}  run-event-step(e2))  and 
              (run-event-loc(e1)  =  run-event-loc(e2)))


Date html generated: 2011_08_16-PM-07_00_57
Last ObjectModification: 2011_06_18-AM-11_15_13

Home Index