{ Info:Type. B:{B:Type| valueall-type(B)} . n:. A:n  Type.
  Xs:k:n  EClass(A k).
    ((k:n. Programmable(A k;Xs k))
     (F:Id  k:n  bag(A k)  bag(B)
          Programmable(B;F|Loc; Xs|) supposing x:Id. ((F x (k.{})) = {}))) }

{ Proof }



Definitions occuring in Statement :  programmable: Programmable(A;X) simple-loc-comb: F|Loc; Xs| eclass: EClass(A[eo; e]) Id: Id int_seg: {i..j} nat: uimplies: b supposing a all: x:A. B[x] implies: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  union: left + right or: P  Q nat_plus: l_contains: A  B cmp-le: cmp-le(cmp;x;y) inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) rationals: qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} atom: Atom$n i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome dstype: dstype(TypeNames; d; a) fset-member: a  s f-subset: xs  ys fset: FSet{T} fset-closed: (s closed under fs) IdLnk: IdLnk Knd: Knd MaName: MaName l_disjoint: l_disjoint(T;l1;l2) consensus-state3: consensus-state3(T) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i consensus-rcv: consensus-rcv(V;A) infix_ap: x f y es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i decidable: Dec(P) void: Void sqequal: s ~ t rev_implies: P  Q spread: spread def pi1: fst(t) decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b es-E-interface: E(X) guard: {T} sq_type: SQType(T) lelt: i  j < k eq_atom: eq_atom$n(x;y) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) cand: A c B pair: <a, b> bool: eclass-program: eclass-program{i:l}(Info) iff: P  Q event_ordering: EO es-E: E event-ordering+: EO+(Info) real: grp_car: |g| subtype: S  T natural_number: $n limited-type: LimitedType fpf-single: x : v fpf-join: f  g strong-subtype: strong-subtype(A;B) ge: i  j  less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B uall: [x:A]. B[x] dataflow: dataflow(A;B) so_lambda: x.t[x] false: False not: A le: A  B simple-loc-comb: F|Loc; Xs| axiom: Ax empty-bag: {} lambda: x.A[x] member: t  T list: type List fpf: a:A fp-B[a] product: x:A  B[x] exists: x:A. B[x] valueall-type: valueall-type(T) nat: eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] implies: P  Q programmable: Programmable(A;X) prop: all: x:A. B[x] set: {x:A| B[x]}  universe: Type function: x:A  B[x] bag: bag(T) apply: f a int_seg: {i..j} Id: Id uimplies: b supposing a isect: x:A. B[x] upto: upto(n) map: map(f;as) length: ||as|| int: equal: s = t dataflow-program: DataflowProgram(A) df-program-type: df-program-type(dfp) fpf-empty: bfalse: ff null: null(as) es-loc: loc(e) listp: A List combination: Combination(n;T) compose: f o g es-le-before: loc(e) es-info: info(e) last: last(L) data-stream: data-stream(P;L) fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) dataflow-set-class: dataflow-set-class(x.P[x]) dataflow-history-val: dataflow-history-val(es;e;x.P[x]) df-program-meaning: df-program-meaning(dfp) null-df-program: null-df-program(B) select: l[i] base: Base rcv: rcv(l,tg) locl: locl(a) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) bag-member: bag-member(T;x;bs) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) tag-by: zT record: record(x.T[x]) isect2: T1  T2 stream: stream(A) b-union: A  B deq: EqDecider(T) ma-state: State(ds) fpf-dom: x  dom(f) class-program: ClassProgram(T) fpf-sub: f  g classrel: v  X(e) sq_stable: SqStable(P) true: True fpf-cap: f(x)?z suptype: suptype(S; T) simple-loc-comb-program: simple-loc-comb-program(F;B;Ps)
Lemmas :  select_wf simple-loc-comb-program_wf subtype_rel_function int_seg_properties sq_stable__subtype_rel subtype_rel_dep_function true_wf squash_wf subtype_rel_bag subtype_rel-equal sq_stable__and sq_stable__equal iff_wf rev_implies_wf defined-by-simple-loc-comb-program base_wf select-map le_wf length_wf1 select_upto df-program-meaning_wf_null dataflow-history-val_wf es-info_wf es-le-before_wf map_wf data-stream-null-df-program map-map es-loc_wf es-le-before_wf2 es-le_wf top_wf last-map es-le-before-not-null assert_wf not_wf false_wf bool_wf bool_subtype_base bfalse_wf length_wf_nat df-program-type_wf dataflow-program_wf fpf-empty_wf eclass_wf int_seg_wf nat_properties programmable_wf programmable-iff all_functionality_wrt_iff eclass-program_wf valueall-type_wf nat_wf event-ordering+_wf event-ordering+_inc es-E_wf bag_wf Id_wf empty-bag_wf fpf_wf dataflow_wf simple-loc-comb_wf eclass-program-type_wf es-base-E_wf subtype_rel_self defined-class_wf member_wf es-interface-top es-interface-subtype_rel2 subtype_rel_wf upto_wf length-map length_upto decidable__equal_int subtype_base_sq int_subtype_base

\mforall{}Info:Type.  \mforall{}B:\{B:Type|  valueall-type(B)\}  .  \mforall{}n:\mBbbN{}.  \mforall{}A:\mBbbN{}n  {}\mrightarrow{}  Type.  \mforall{}Xs:k:\mBbbN{}n  {}\mrightarrow{}  EClass(A  k).
    ((\mforall{}k:\mBbbN{}n.  Programmable(A  k;Xs  k))
    {}\mRightarrow{}  (\mforall{}F:Id  {}\mrightarrow{}  k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)  {}\mrightarrow{}  bag(B)
                Programmable(B;F|Loc;  Xs|)  supposing  \mforall{}x:Id.  ((F  x  (\mlambda{}k.\{\}))  =  \{\})))


Date html generated: 2011_08_16-PM-06_29_50
Last ObjectModification: 2011_06_03-AM-11_43_31

Home Index