{ st1,st2:SimpleType.
    (st1  st2
     st2  st1
     (rename:Atom  Atom
         (Inj({a:Atom| (a  st-vars(st2))} ;Atom;rename)
          (st1 = st-subst(a.st_var(rename a);st2))))) }

{ Proof }



Definitions occuring in Statement :  st-instance: st1  st2 st-subst: st-subst(subst;st) st-vars: st-vars(st) st_var: st_var(name) simple_type: SimpleType inject: Inj(A;B;f) all: x:A. B[x] exists: x:A. B[x] implies: P  Q and: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] atom: Atom equal: s = t l_member: (x  l)
Definitions :  lambda: x.A[x] st_var: st_var(name) apply: f a eq_st: eq_st(st1;st2) subtype: S  T suptype: suptype(S; T) st-vars: st-vars(st) st-subst: st-subst(subst;st) sqequal: s ~ t member: t  T assert: b rec: rec(x.A[x]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B isect: x:A. B[x] uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q st-instance: st1  st2 exists: x:A. B[x] and: P  Q product: x:A  B[x] equal: s = t simple_type: SimpleType inject: Inj(A;B;f) set: {x:A| B[x]}  l_member: (x  l) prop: universe: Type function: x:A  B[x] atom: Atom CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  ExRepD: Error :ExRepD,  st_var?: st_var?(x) st_class-kind: st_class-kind(x) st_class: st_class(kind) simple_type_ind_st_class: simple_type_ind_st_class_compseq_tag_def st_list-kind: st_list-kind(x) st_list: st_list(kind) simple_type_ind_st_list: simple_type_ind_st_list_compseq_tag_def st_union-left: st_union-left(x) st_union-right: st_union-right(x) st_union: st_union(left;right) simple_type_ind_st_union: simple_type_ind_st_union_compseq_tag_def st_prod-fst: st_prod-fst(x) st_prod-snd: st_prod-snd(x) st_prod: st_prod(fst;snd) simple_type_ind_st_prod: simple_type_ind_st_prod_compseq_tag_def st_arrow-domain: st_arrow-domain(x) st_arrow-range: st_arrow-range(x) atom-deq: AtomDeq so_lambda: x.t[x] rev_implies: P  Q st_arrow: st_arrow(domain;range) simple_type_ind_st_arrow: simple_type_ind_st_arrow_compseq_tag_def void: Void st_const-ty: st_const-ty(x) st_const: st_const(ty) simple_type_ind_st_const: simple_type_ind_st_const_compseq_tag_def pair: <a, b> iff: P  Q bool: IdLnk: IdLnk Id: Id rationals: so_apply: x[s] or: P  Q append: as @ bs guard: {T} locl: locl(a) Knd: Knd limited-type: LimitedType list: type List tl: tl(l) hd: hd(l) st_const?: st_const?(x) st_arrow?: st_arrow?(x) st_prod?: st_prod?(x) st_union?: st_union?(x) st_list?: st_list?(x) st_class?: st_class?(x) st_var-name: st_var-name(x) true: True false: False decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  nil: [] cons: [car / cdr] l-union: as  bs simple_type_ind_st_var: simple_type_ind_st_var_compseq_tag_def union: left + right sq_type: SQType(T) squash: T base: Base bfalse: ff btrue: tt fpf-dom: x  dom(f) eclass: EClass(A[eo; e]) fpf: a:A fp-B[a] cand: A c B lt_int: i <z j le_int: i z j nat: deq: EqDecider(T) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit MaAuto: Error :MaAuto,  deq-member: deq-member(eq;x;L) intensional-universe: IType natural_number: $n real: grp_car: |g| select: l[i] length: ||as|| fpf-cap: f(x)?z es-E-interface: E(X) int_seg: {i..j} quotient: x,y:A//B[x; y] divides: b | a assoced: a ~ b set_car: |p| set_leq: a  b set_lt: a <p b grp_lt: a < b rng_car: |r| nat_plus: atom: Atom$n dstype: dstype(TypeNames; d; a) fset: FSet{T} MaName: MaName consensus-state3: consensus-state3(T) consensus-rcv: consensus-rcv(V;A) es-E: E runEvents: runEvents(r) l_contains: A  B cmp-le: cmp-le(cmp;x;y) reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-causl: (e < e') es-locl: (e <loc e') es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) cut-order: a (X;f) b path-goes-thru: x-f*-y thru i lg-edge: lg-edge(g;a;b) infix_ap: x f y decidable: Dec(P) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) RepeatFor: Error :RepeatFor,  it: last: last(L) remove-repeats: remove-repeats(eq;L)
Lemmas :  l_member-set set_subtype_base sq_stable_from_decidable decidable__l_member decidable__atom_equal deq_wf nat_wf strong-subtype-deq-subtype strong-subtype_wf strong-subtype-set3 strong-subtype-self list-subtype length_wf1 select_wf intensional-universe_wf not_wf bnot_wf bool_wf assert-deq-member not_functionality_wrt_iff assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert eqtt_to_assert st_var-name_wf deq-member_wf st_const?_wf bfalse_wf btrue_wf btrue_neq_bfalse st_class?_wf st_class-kind_wf st_list?_wf st_list-kind_wf st_union-right_wf st_union?_wf st_union-left_wf st_prod-snd_wf st_prod?_wf st_prod-fst_wf st_arrow-range_wf subtype_base_sq rec_subtype_base base_wf subtype_rel_wf atom_subtype_base product_subtype_base union_subtype_base squash_wf st_arrow?_wf st_arrow-domain_wf false_wf assert_wf true_wf st_var?_wf ifthenelse_wf st_var_wf member_singleton st_const_wf nil_member implies_functionality_wrt_iff iff_wf rev_implies_wf all_functionality_wrt_iff member-union st_arrow_wf l-union_wf atom-deq_wf st_prod_wf st_union_wf st_list_wf st_class_wf inject_wf st-instance_wf assert-eq_st st-subst_wf member_wf st-vars_wf l_member_wf simple_type_wf

\mforall{}st1,st2:SimpleType.
    (st1  \mleq{}  st2
    {}\mRightarrow{}  st2  \mleq{}  st1
    {}\mRightarrow{}  (\mexists{}rename:Atom  {}\mrightarrow{}  Atom.  (Inj(\{a:Atom|  (a  \mmember{}  st-vars(st2))\}  ;Atom;rename)  \mwedge{}  (st1  =  st-subst(\mlambda{}a.st\_\000Cvar(rename  a);st2)))))


Date html generated: 2011_08_17-PM-04_57_38
Last ObjectModification: 2011_02_07-PM-01_00_47

Home Index