Nuprl Lemma : assert-in-missing-nat

i:ℕ. ∀missing:ℕ List.  ((↑in-missing(i;missing))  (i ∈ missing))


Proof




Definitions occuring in Statement :  in-missing: in-missing(i;missing) l_member: (x ∈ l) list: List nat: assert: b all: x:A. B[x] implies:  Q
Lemmas :  list_induction assert_wf in-missing_wf subtype_rel_list l_member_wf nil_wf nil_member false_wf reduce_cons_lemma iff_transitivity le_int_wf bool_wf eqtt_to_assert assert_of_le_int bor_wf eq_int_wf reduce_wf bfalse_wf le_wf or_wf equal_wf iff_weakening_uiff assert_of_band assert_of_bor assert_of_eq_int cons_wf cons_member list_wf nat_wf
\mforall{}i:\mBbbN{}.  \mforall{}missing:\mBbbN{}  List.    ((\muparrow{}in-missing(i;missing))  {}\mRightarrow{}  (i  \mmember{}  missing))



Date html generated: 2015_07_17-AM-08_21_19
Last ObjectModification: 2015_04_02-PM-05_43_04

Home Index