Nuprl Lemma : assert-in-missing-nat
∀i:ℕ. ∀missing:ℕ List. ((↑in-missing(i;missing))
⇒ (i ∈ missing))
Proof
Definitions occuring in Statement :
in-missing: in-missing(i;missing)
,
l_member: (x ∈ l)
,
list: T List
,
nat: ℕ
,
assert: ↑b
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
Lemmas :
list_induction,
assert_wf,
in-missing_wf,
subtype_rel_list,
l_member_wf,
nil_wf,
nil_member,
false_wf,
reduce_cons_lemma,
iff_transitivity,
le_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_le_int,
bor_wf,
eq_int_wf,
reduce_wf,
bfalse_wf,
le_wf,
or_wf,
equal_wf,
iff_weakening_uiff,
assert_of_band,
assert_of_bor,
assert_of_eq_int,
cons_wf,
cons_member,
list_wf,
nat_wf
\mforall{}i:\mBbbN{}. \mforall{}missing:\mBbbN{} List. ((\muparrow{}in-missing(i;missing)) {}\mRightarrow{} (i \mmember{} missing))
Date html generated:
2015_07_17-AM-08_21_19
Last ObjectModification:
2015_04_02-PM-05_43_04
Home
Index