Nuprl Lemma : assert-in-missing-nat
∀i:ℕ. ∀missing:ℕ List.  ((↑in-missing(i;missing)) 
⇒ (i ∈ missing))
Proof
Definitions occuring in Statement : 
in-missing: in-missing(i;missing)
, 
l_member: (x ∈ l)
, 
list: T List
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Lemmas : 
list_induction, 
assert_wf, 
in-missing_wf, 
subtype_rel_list, 
l_member_wf, 
nil_wf, 
nil_member, 
false_wf, 
reduce_cons_lemma, 
iff_transitivity, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
bor_wf, 
eq_int_wf, 
reduce_wf, 
bfalse_wf, 
le_wf, 
or_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bor, 
assert_of_eq_int, 
cons_wf, 
cons_member, 
list_wf, 
nat_wf
\mforall{}i:\mBbbN{}.  \mforall{}missing:\mBbbN{}  List.    ((\muparrow{}in-missing(i;missing))  {}\mRightarrow{}  (i  \mmember{}  missing))
Date html generated:
2015_07_17-AM-08_21_19
Last ObjectModification:
2015_04_02-PM-05_43_04
Home
Index