Nuprl Lemma : map-sig-inDom_wf
∀[Key,Value:Type]. ∀[m:map-sig{i:l}(Key;Value)].  (map-sig-inDom(m) ∈ Key ─→ map-sig-map(m) ─→ 𝔹)
Proof
Definitions occuring in Statement : 
map-sig-inDom: map-sig-inDom(m)
, 
map-sig-map: map-sig-map(m)
, 
map-sig: map-sig{i:l}(Key;Value)
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
subtype_rel_self, 
valueall-type_wf, 
deq_wf, 
unit_wf2, 
bool_wf, 
all_wf, 
iff_wf, 
assert_wf, 
isl_wf, 
not_wf, 
equal_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
bnot_wf, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
assert_of_bnot, 
it_wf, 
map-sig_wf
\mforall{}[Key,Value:Type].  \mforall{}[m:map-sig\{i:l\}(Key;Value)].    (map-sig-inDom(m)  \mmember{}  Key  {}\mrightarrow{}  map-sig-map(m)  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2015_07_17-AM-08_22_13
Last ObjectModification:
2015_04_02-PM-05_43_39
Home
Index