Nuprl Lemma : hdf-sequence_wf

[A,B,C:Type]. ∀[X:hdataflow(A;B)]. ∀[Y:hdataflow(A;C)]. ∀[Z:hdataflow(A;B)].
  hdf-sequence(X;Y;Z) ∈ hdataflow(A;B) supposing valueall-type(B)


Proof




Definitions occuring in Statement :  hdf-sequence: hdf-sequence(X;Y;Z) hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Lemmas :  bfalse_wf hdf-halted_wf hdf-ap_wf bag_wf bag-null_wf bool_wf eqtt_to_assert assert-bag-null bnot_wf equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base eqff_to_assert assert-bnot equal-wf-T-base iff_transitivity assert_wf not_wf iff_weakening_uiff assert_of_band assert_of_bnot valueall-type_wf hdataflow_wf mk-hdf_wf
\mforall{}[A,B,C:Type].  \mforall{}[X:hdataflow(A;B)].  \mforall{}[Y:hdataflow(A;C)].  \mforall{}[Z:hdataflow(A;B)].
    hdf-sequence(X;Y;Z)  \mmember{}  hdataflow(A;B)  supposing  valueall-type(B)



Date html generated: 2015_07_17-AM-08_06_45
Last ObjectModification: 2015_01_27-PM-00_06_52

Home Index