Nuprl Lemma : Kan-cubical-sigma_wf

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[B:{X.Kan-type(A) ⊢ _(Kan)}].  (KanΣ B ∈ {X ⊢ _(Kan)})


Proof




Definitions occuring in Statement :  Kan-cubical-sigma: KanΣ B Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} cube-context-adjoin: X.A cubical-set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Kan-cubical-sigma: KanΣ B all: x:A. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) so_lambda: λ2x.t[x] prop: so_apply: x[s] implies:  Q Kan-cubical-type: {X ⊢ _(Kan)} and: P ∧ Q cand: c∧ B
Lemmas referenced :  Kan_sigma_filler_wf set_wf list_wf coordinate_name_wf I-cube_wf nameset_wf int_seg_wf A-open-box_wf cubical-sigma_wf Kan-type_wf cube-context-adjoin_wf subtype_rel_list cubical-type-at_wf Kan-A-filler_wf Kan_sigma_filler_uniform uniform-Kan-A-filler_wf equal_wf Kan-cubical-type_wf cubical-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis isectElimination functionEquality because_Cache natural_numberEquality applyEquality independent_isectElimination lambdaEquality setElimination rename sqequalRule functionExtensionality lambdaFormation dependent_set_memberEquality dependent_pairEquality independent_pairFormation equalitySymmetry hyp_replacement Error :applyLambdaEquality,  productElimination productEquality equalityTransitivity independent_functionElimination axiomEquality isect_memberEquality

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}].    (Kan\mSigma{}  A  B  \mmember{}  \{X  \mvdash{}  \_(Kan)\})



Date html generated: 2016_10_28-AM-11_39_50
Last ObjectModification: 2016_07_12-AM-11_51_57

Theory : cubical!sets


Home Index