Nuprl Lemma : Kan_sigma_filler_uniform
∀X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}.
  uniform-Kan-A-filler(X;Σ Kan-type(A) Kan-type(B);Kan_sigma_filler(A;B))
Proof
Definitions occuring in Statement : 
Kan_sigma_filler: Kan_sigma_filler(A;B)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
cubical-set: CubicalSet
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler)
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
and: P ∧ Q
, 
name-morph: name-morph(I;J)
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
l_subset: l_subset(T;as;bs)
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nat: ℕ
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
name-morph-domain: name-morph-domain(f;I)
, 
rev_implies: P 
⇐ Q
, 
Kan_sigma_filler: Kan_sigma_filler(A;B)
, 
let: let, 
cubical-type-ap-morph: (u a f)
, 
cubical-sigma: Σ A B
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
sigma-box-fst: sigma-box-fst(bx)
, 
A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx)
, 
compose: f o g
, 
A-face: A-face(X;A;I;alpha)
, 
A-face-image: A-face-image(X;A;I;K;f;alpha;face)
, 
spreadn: spread3, 
true: True
, 
l_all: (∀x∈L.P[x])
, 
cube-set-restriction: f(s)
, 
cube-context-adjoin: X.A
, 
cc-adjoin-cube: (v;u)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
sigma-box-snd: sigma-box-snd(bx)
, 
isname: isname(z)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L)
, 
cubical-type-at: A(a)
, 
is-A-face: is-A-face(X;A;I;alpha;bx;f)
Lemmas referenced : 
list-subtype, 
coordinate_name_wf, 
subtype_rel_list, 
nameset_wf, 
assert-isname, 
l_member_wf, 
map_wf, 
subtype_base_sq, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
select_wf, 
sq_stable__le, 
nat_properties, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-assert, 
isname_wf, 
name-morph_wf, 
A-open-box_wf, 
cubical-sigma_wf, 
Kan-type_wf, 
cube-context-adjoin_wf, 
int_seg_wf, 
list_wf, 
I-cube_wf, 
Kan-cubical-type_wf, 
cubical-set_wf, 
cons_member, 
member_filter_2, 
filter_wf5, 
cons_wf, 
cubical-sigma-at, 
Kanfiller-uniform, 
sigma-box-fst_wf, 
cubical-type-at_wf, 
cc-adjoin-cube_wf, 
cube-set-restriction_wf, 
A-open-box-equal, 
A-open-box-image_wf, 
equal_wf, 
Kanfiller_wf, 
A-face_wf, 
squash_wf, 
true_wf, 
istype-universe, 
set_wf, 
map-map, 
istype-le, 
istype-less_than, 
length_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
face-map_wf2, 
name-morph_subtype_remove1, 
isname-nameset, 
cubical-type-ap-morph_wf, 
subtype_rel-equal, 
face-map-comp, 
cubical-type_wf, 
iff_weakening_equal, 
cube-set-restriction-comp, 
sigma-box-snd_wf, 
cc-adjoin-cube-restriction, 
subtype_rel_self, 
subtype_rel_set, 
fills-A-open-box_wf, 
subtype_rel_universe1, 
A-adjacent-compatible_wf, 
not_wf, 
l_subset_wf, 
all_wf, 
l_exists_wf, 
A-face-name_wf, 
nameset_subtype, 
l_all_wf2, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
decidable__lt, 
pairwise_wf2, 
assert_of_le_int, 
length-map-sq, 
top_wf, 
select-map, 
is-A-face_wf, 
name-comp_wf, 
cubical-type-ap-morph-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
sqequalRule, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
productElimination, 
dependent_set_memberEquality_alt, 
universeIsType, 
setEquality, 
because_Cache, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
intEquality, 
natural_numberEquality, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
functionIsType, 
setIsType, 
dependent_pairEquality_alt, 
hyp_replacement, 
universeEquality, 
productIsType, 
productEquality, 
closedConclusion, 
independent_pairEquality, 
spreadEquality
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.
    uniform-Kan-A-filler(X;\mSigma{}  Kan-type(A)  Kan-type(B);Kan\_sigma\_filler(A;B))
Date html generated:
2019_11_05-PM-00_31_12
Last ObjectModification:
2018_12_10-PM-00_56_44
Theory : cubical!sets
Home
Index