Nuprl Lemma : Kan_sigma_filler_uniform

X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}.
  uniform-Kan-A-filler(X;Σ Kan-type(A) Kan-type(B);Kan_sigma_filler(A;B))


Proof




Definitions occuring in Statement :  Kan_sigma_filler: Kan_sigma_filler(A;B) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) cubical-sigma: Σ B cube-context-adjoin: X.A cubical-set: CubicalSet all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uniform-Kan-A-filler: uniform-Kan-A-filler(X;A;filler) implies:  Q uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) A-open-box: A-open-box(X;A;I;alpha;J;x;i) and: P ∧ Q name-morph: name-morph(I;J) prop: uiff: uiff(P;Q) l_subset: l_subset(T;as;bs) l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B coordinate_name: Cname int_upper: {i...} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} nat: squash: T sq_stable: SqStable(P) int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top iff: ⇐⇒ Q name-morph-domain: name-morph-domain(f;I) rev_implies:  Q Kan_sigma_filler: Kan_sigma_filler(A;B) let: let cubical-type-ap-morph: (u f) cubical-sigma: Σ B pi2: snd(t) pi1: fst(t) sigma-box-fst: sigma-box-fst(bx) A-open-box-image: A-open-box-image(X;A;I;K;f;alpha;bx) compose: g A-face: A-face(X;A;I;alpha) A-face-image: A-face-image(X;A;I;K;f;alpha;face) spreadn: spread3 true: True l_all: (∀x∈L.P[x]) cube-set-restriction: f(s) cube-context-adjoin: X.A cc-adjoin-cube: (v;u) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] sigma-box-snd: sigma-box-snd(bx) isname: isname(z) rev_uimplies: rev_uimplies(P;Q) fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) cubical-type-at: A(a) is-A-face: is-A-face(X;A;I;alpha;bx;f)
Lemmas referenced :  list-subtype coordinate_name_wf subtype_rel_list nameset_wf assert-isname l_member_wf map_wf subtype_base_sq set_subtype_base le_wf istype-int int_subtype_base select_wf sq_stable__le nat_properties int_seg_properties sq_stable__l_member decidable__equal-coordinate_name decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-assert isname_wf name-morph_wf A-open-box_wf cubical-sigma_wf Kan-type_wf cube-context-adjoin_wf int_seg_wf list_wf I-cube_wf Kan-cubical-type_wf cubical-set_wf cons_member member_filter_2 filter_wf5 cons_wf cubical-sigma-at Kanfiller-uniform sigma-box-fst_wf cubical-type-at_wf cc-adjoin-cube_wf cube-set-restriction_wf A-open-box-equal A-open-box-image_wf equal_wf Kanfiller_wf A-face_wf squash_wf true_wf istype-universe set_wf map-map istype-le istype-less_than length_wf list-diff_wf cname_deq_wf nil_wf face-map_wf2 name-morph_subtype_remove1 isname-nameset cubical-type-ap-morph_wf subtype_rel-equal face-map-comp cubical-type_wf iff_weakening_equal cube-set-restriction-comp sigma-box-snd_wf cc-adjoin-cube-restriction subtype_rel_self subtype_rel_set fills-A-open-box_wf subtype_rel_universe1 A-adjacent-compatible_wf not_wf l_subset_wf all_wf l_exists_wf A-face-name_wf nameset_subtype l_all_wf2 subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma decidable__lt pairwise_wf2 assert_of_le_int length-map-sq top_wf select-map is-A-face_wf name-comp_wf cubical-type-ap-morph-comp
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality applyEquality independent_isectElimination lambdaEquality_alt setElimination rename inhabitedIsType sqequalRule equalityTransitivity equalitySymmetry functionExtensionality productElimination dependent_set_memberEquality_alt universeIsType setEquality because_Cache equalityIstype dependent_functionElimination independent_functionElimination instantiate cumulativity intEquality natural_numberEquality applyLambdaEquality imageMemberEquality baseClosed imageElimination unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination independent_pairFormation functionIsType setIsType dependent_pairEquality_alt hyp_replacement universeEquality productIsType productEquality closedConclusion independent_pairEquality spreadEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.
    uniform-Kan-A-filler(X;\mSigma{}  Kan-type(A)  Kan-type(B);Kan\_sigma\_filler(A;B))



Date html generated: 2019_11_05-PM-00_31_12
Last ObjectModification: 2018_12_10-PM-00_56_44

Theory : cubical!sets


Home Index