Nuprl Lemma : sigma-box-snd_wf

[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[B:{X.Kan-type(A) ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List].
[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)]. ∀[cbA:Kan-type(A)(alpha)].
  sigma-box-snd(bx) ∈ A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;cbA);J;x;i) 
  supposing fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);cbA)


Proof




Definitions occuring in Statement :  sigma-box-snd: sigma-box-snd(bx) sigma-box-fst: sigma-box-fst(bx) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-sigma: Σ B cc-adjoin-cube: (v;u) cube-context-adjoin: X.A cubical-type-at: A(a) I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T all: x:A. B[x] subtype_rel: A ⊆B nameset: nameset(L) sigma-box-fst: sigma-box-fst(bx) sigma-box-snd: sigma-box-snd(bx) A-open-box: A-open-box(X;A;I;alpha;J;x;i) and: P ∧ Q implies:  Q prop: A-face: A-face(X;A;I;alpha) top: Top pi1: fst(t) pi2: snd(t) squash: T true: True fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube) fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L) l_all: (∀x∈L.P[x]) l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B int_seg: {i..j-} nat: lelt: i ≤ j < k guard: {T} sq_stable: SqStable(P) coordinate_name: Cname int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False cubical-type-at: A(a) cubical-sigma: Σ B is-A-face: is-A-face(X;A;I;alpha;bx;f) spreadn: spread3 pairwise: (∀x,y∈L.  P[x; y]) A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) le: A ≤ B less_than: a < b A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) cubical-type-ap-morph: (u f) iff: ⇐⇒ Q rev_implies:  Q A-face-name: A-face-name(f) l_exists: (∃x∈L. P[x]) so_apply: x[s] so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_lambda: λ2y.t[x; y]
Lemmas referenced :  cubical-type-at_wf Kan-type_wf A-open-box_wf cubical-sigma_wf cube-context-adjoin_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf I-cube_wf Kan-cubical-type_wf cubical-set_wf sigma-box-fst_wf list-subtype A-face_wf map_wf l_member_wf cc-adjoin-cube_wf cubical-sigma-at istype-void cc-adjoin-cube-restriction list-diff_wf cname_deq_wf cons_wf nil_wf cube-set-restriction_wf face-map_wf2 cubical-type-ap-morph_wf length-map nat_properties int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-less_than length_wf select-map top_wf is-A-face_wf pi1_wf_top subtype_rel_self lelt_wf int_formula_prop_less_lemma intformless_wf satisfiable-full-omega-tt decidable__lt equal_wf A-face-compatible_wf select_wf not_wf true_wf squash_wf cubical-type_wf name-morph_wf name-comp_wf subtype_rel_wf list-diff2-sym iff_weakening_equal cubical-type-ap-morph-comp cube-set-restriction-comp subtype_rel-equal list-diff2 trivial-equal face-maps-commute ext-eq_weakening subtype_rel_weakening l_all_map A-face-name_wf pairwise-map length-map-sq A-adjacent-compatible_wf l_subset_wf l_exists_wf l_all_wf2 subtract_wf itermSubtract_wf int_term_value_subtract_lemma pairwise_wf2 fills-A-open-box_wf sq_stable__l_subset
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination applyEquality independent_isectElimination lambdaEquality_alt setElimination rename inhabitedIsType sqequalRule natural_numberEquality promote_hyp dependent_set_memberEquality_alt productElimination because_Cache equalityTransitivity equalitySymmetry lambdaFormation_alt setEquality functionExtensionality isect_memberEquality_alt voidElimination dependent_pairEquality_alt productIsType equalityIsType1 independent_functionElimination imageElimination imageMemberEquality baseClosed hyp_replacement independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality applyLambdaEquality independent_pairEquality spreadEquality productEquality lambdaFormation voidEquality isect_memberEquality computeAll intEquality dependent_pairFormation dependent_set_memberEquality lambdaEquality dependent_pairEquality equalityElimination universeEquality instantiate cumulativity functionIsType setIsType closedConclusion

Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[bx:A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i)].  \mforall{}[cbA:Kan-type(A)(alpha)].
    sigma-box-snd(bx)  \mmember{}  A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;cbA);J;x;i) 
    supposing  fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);cbA)



Date html generated: 2019_11_05-PM-00_30_15
Last ObjectModification: 2018_11_10-PM-02_40_20

Theory : cubical!sets


Home Index