Nuprl Lemma : sigma-box-snd_wf
∀[X:CubicalSet]. ∀[A:{X ⊢ _(Kan)}]. ∀[B:{X.Kan-type(A) ⊢ _(Kan)}]. ∀[I:Cname List]. ∀[alpha:X(I)]. ∀[J:nameset(I) List].
∀[x:nameset(I)]. ∀[i:ℕ2]. ∀[bx:A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i)]. ∀[cbA:Kan-type(A)(alpha)].
  sigma-box-snd(bx) ∈ A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;cbA);J;x;i) 
  supposing fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);cbA)
Proof
Definitions occuring in Statement : 
sigma-box-snd: sigma-box-snd(bx)
, 
sigma-box-fst: sigma-box-fst(bx)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-sigma: Σ A B
, 
cc-adjoin-cube: (v;u)
, 
cube-context-adjoin: X.A
, 
cubical-type-at: A(a)
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nameset: nameset(L)
, 
sigma-box-fst: sigma-box-fst(bx)
, 
sigma-box-snd: sigma-box-snd(bx)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
A-face: A-face(X;A;I;alpha)
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
squash: ↓T
, 
true: True
, 
fills-A-open-box: fills-A-open-box(X;A;I;alpha;bx;cube)
, 
fills-A-faces: fills-A-faces(X;A;I;alpha;bx;L)
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
cubical-type-at: A(a)
, 
cubical-sigma: Σ A B
, 
is-A-face: is-A-face(X;A;I;alpha;bx;f)
, 
spreadn: spread3, 
pairwise: (∀x,y∈L.  P[x; y])
, 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L)
, 
le: A ≤ B
, 
less_than: a < b
, 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2)
, 
cubical-type-ap-morph: (u a f)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
A-face-name: A-face-name(f)
, 
l_exists: (∃x∈L. P[x])
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
Lemmas referenced : 
cubical-type-at_wf, 
Kan-type_wf, 
A-open-box_wf, 
cubical-sigma_wf, 
cube-context-adjoin_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
I-cube_wf, 
Kan-cubical-type_wf, 
cubical-set_wf, 
sigma-box-fst_wf, 
list-subtype, 
A-face_wf, 
map_wf, 
l_member_wf, 
cc-adjoin-cube_wf, 
cubical-sigma-at, 
istype-void, 
cc-adjoin-cube-restriction, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
cubical-type-ap-morph_wf, 
length-map, 
nat_properties, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-less_than, 
length_wf, 
select-map, 
top_wf, 
is-A-face_wf, 
pi1_wf_top, 
subtype_rel_self, 
lelt_wf, 
int_formula_prop_less_lemma, 
intformless_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
equal_wf, 
A-face-compatible_wf, 
select_wf, 
not_wf, 
true_wf, 
squash_wf, 
cubical-type_wf, 
name-morph_wf, 
name-comp_wf, 
subtype_rel_wf, 
list-diff2-sym, 
iff_weakening_equal, 
cubical-type-ap-morph-comp, 
cube-set-restriction-comp, 
subtype_rel-equal, 
list-diff2, 
trivial-equal, 
face-maps-commute, 
ext-eq_weakening, 
subtype_rel_weakening, 
l_all_map, 
A-face-name_wf, 
pairwise-map, 
length-map-sq, 
A-adjacent-compatible_wf, 
l_subset_wf, 
l_exists_wf, 
l_all_wf2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
pairwise_wf2, 
fills-A-open-box_wf, 
sq_stable__l_subset
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
applyEquality, 
independent_isectElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
sqequalRule, 
natural_numberEquality, 
promote_hyp, 
dependent_set_memberEquality_alt, 
productElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
setEquality, 
functionExtensionality, 
isect_memberEquality_alt, 
voidElimination, 
dependent_pairEquality_alt, 
productIsType, 
equalityIsType1, 
independent_functionElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
applyLambdaEquality, 
independent_pairEquality, 
spreadEquality, 
productEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
computeAll, 
intEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
lambdaEquality, 
dependent_pairEquality, 
equalityElimination, 
universeEquality, 
instantiate, 
cumulativity, 
functionIsType, 
setIsType, 
closedConclusion
Latex:
\mforall{}[X:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_(Kan)\}].  \mforall{}[B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}].  \mforall{}[I:Cname  List].  \mforall{}[alpha:X(I)].
\mforall{}[J:nameset(I)  List].  \mforall{}[x:nameset(I)].  \mforall{}[i:\mBbbN{}2].
\mforall{}[bx:A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i)].  \mforall{}[cbA:Kan-type(A)(alpha)].
    sigma-box-snd(bx)  \mmember{}  A-open-box(X.Kan-type(A);Kan-type(B);I;(alpha;cbA);J;x;i) 
    supposing  fills-A-open-box(X;Kan-type(A);I;alpha;sigma-box-fst(bx);cbA)
Date html generated:
2019_11_05-PM-00_30_15
Last ObjectModification:
2018_11_10-PM-02_40_20
Theory : cubical!sets
Home
Index