Nuprl Lemma : sigma-box-fst_wf
∀X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}. ∀I:Cname List. ∀alpha:X(I). ∀J:nameset(I) List.
∀x:nameset(I). ∀i:ℕ2. ∀bx:A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i).
  (sigma-box-fst(bx) ∈ A-open-box(X;Kan-type(A);I;alpha;J;x;i))
Proof
Definitions occuring in Statement : 
sigma-box-fst: sigma-box-fst(bx)
, 
Kan-type: Kan-type(Ak)
, 
Kan-cubical-type: {X ⊢ _(Kan)}
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
cubical-sigma: Σ A B
, 
cube-context-adjoin: X.A
, 
I-cube: X(I)
, 
cubical-set: CubicalSet
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
list: T List
, 
int_seg: {i..j-}
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sigma-box-fst: sigma-box-fst(bx)
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
nameset: nameset(L)
, 
A-open-box: A-open-box(X;A;I;alpha;J;x;i)
, 
and: P ∧ Q
, 
A-face: A-face(X;A;I;alpha)
, 
top: Top
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cubical-type-at: A(a)
, 
cubical-sigma: Σ A B
, 
cand: A c∧ B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
less_than: a < b
, 
le: A ≤ B
, 
A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2)
, 
spreadn: spread3, 
cubical-type-ap-morph: (u a f)
, 
l_exists: (∃x∈L. P[x])
, 
A-face-name: A-face-name(f)
, 
l_all: (∀x∈L.P[x])
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
A-open-box_wf, 
cubical-sigma_wf, 
Kan-type_wf, 
cube-context-adjoin_wf, 
subtype_rel_list, 
nameset_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
I-cube_wf, 
Kan-cubical-type_wf, 
cubical-set_wf, 
map_wf, 
A-face_wf, 
pi1_wf_top, 
subtype_rel_self, 
cubical-type-at_wf, 
list-diff_wf, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
cube-set-restriction_wf, 
face-map_wf2, 
cc-adjoin-cube_wf, 
A-adjacent-compatible_wf, 
not_wf, 
l_member_wf, 
l_subset_wf, 
all_wf, 
l_exists_wf, 
equal_wf, 
A-face-name_wf, 
nameset_subtype, 
l_all_wf2, 
subtract_wf, 
int_seg_properties, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
sq_stable__le, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
lelt_wf, 
pairwise_wf2, 
length-map, 
length_wf, 
top_wf, 
select_wf, 
cubical-sigma-at, 
A-face-compatible_wf, 
select-map, 
pairwise-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
natural_numberEquality, 
dependent_set_memberEquality, 
productElimination, 
dependent_pairEquality, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
spreadEquality, 
productEquality, 
independent_pairFormation, 
cumulativity, 
universeEquality, 
setEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality
Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
\mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.  \mforall{}bx:A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i).
    (sigma-box-fst(bx)  \mmember{}  A-open-box(X;Kan-type(A);I;alpha;J;x;i))
Date html generated:
2017_10_05-AM-10_24_18
Last ObjectModification:
2017_07_28-AM-11_22_19
Theory : cubical!sets
Home
Index