Nuprl Lemma : sigma-box-fst_wf

X:CubicalSet. ∀A:{X ⊢ _(Kan)}. ∀B:{X.Kan-type(A) ⊢ _(Kan)}. ∀I:Cname List. ∀alpha:X(I). ∀J:nameset(I) List.
x:nameset(I). ∀i:ℕ2. ∀bx:A-open-box(X;Σ Kan-type(A) Kan-type(B);I;alpha;J;x;i).
  (sigma-box-fst(bx) ∈ A-open-box(X;Kan-type(A);I;alpha;J;x;i))


Proof




Definitions occuring in Statement :  sigma-box-fst: sigma-box-fst(bx) Kan-type: Kan-type(Ak) Kan-cubical-type: {X ⊢ _(Kan)} A-open-box: A-open-box(X;A;I;alpha;J;x;i) cubical-sigma: Σ B cube-context-adjoin: X.A I-cube: X(I) cubical-set: CubicalSet nameset: nameset(L) coordinate_name: Cname list: List int_seg: {i..j-} all: x:A. B[x] member: t ∈ T natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sigma-box-fst: sigma-box-fst(bx) uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a nameset: nameset(L) A-open-box: A-open-box(X;A;I;alpha;J;x;i) and: P ∧ Q A-face: A-face(X;A;I;alpha) top: Top pi1: fst(t) pi2: snd(t) cubical-type-at: A(a) cubical-sigma: Σ B cand: c∧ B prop: so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} lelt: i ≤ j < k guard: {T} implies:  Q sq_stable: SqStable(P) squash: T coordinate_name: Cname int_upper: {i...} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] A-adjacent-compatible: A-adjacent-compatible(X;A;I;alpha;L) pairwise: (∀x,y∈L.  P[x; y]) less_than: a < b le: A ≤ B A-face-compatible: A-face-compatible(X;A;I;alpha;f1;f2) spreadn: spread3 cubical-type-ap-morph: (u f) l_exists: (∃x∈L. P[x]) A-face-name: A-face-name(f) l_all: (∀x∈L.P[x]) iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  A-open-box_wf cubical-sigma_wf Kan-type_wf cube-context-adjoin_wf subtype_rel_list nameset_wf coordinate_name_wf int_seg_wf list_wf I-cube_wf Kan-cubical-type_wf cubical-set_wf map_wf A-face_wf pi1_wf_top subtype_rel_self cubical-type-at_wf list-diff_wf cname_deq_wf cons_wf nil_wf cube-set-restriction_wf face-map_wf2 cc-adjoin-cube_wf A-adjacent-compatible_wf not_wf l_member_wf l_subset_wf all_wf l_exists_wf equal_wf A-face-name_wf nameset_subtype l_all_wf2 subtract_wf int_seg_properties sq_stable__l_member decidable__equal-coordinate_name sq_stable__le decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf decidable__lt lelt_wf pairwise_wf2 length-map length_wf top_wf select_wf cubical-sigma-at A-face-compatible_wf select-map pairwise-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid dependent_functionElimination thin hypothesisEquality isectElimination applyEquality independent_isectElimination lambdaEquality setElimination rename because_Cache sqequalRule natural_numberEquality dependent_set_memberEquality productElimination dependent_pairEquality independent_pairEquality isect_memberEquality voidElimination voidEquality spreadEquality productEquality independent_pairFormation cumulativity universeEquality setEquality independent_functionElimination imageMemberEquality baseClosed imageElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll instantiate equalityTransitivity equalitySymmetry applyLambdaEquality

Latex:
\mforall{}X:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_(Kan)\}.  \mforall{}B:\{X.Kan-type(A)  \mvdash{}  \_(Kan)\}.  \mforall{}I:Cname  List.  \mforall{}alpha:X(I).
\mforall{}J:nameset(I)  List.  \mforall{}x:nameset(I).  \mforall{}i:\mBbbN{}2.  \mforall{}bx:A-open-box(X;\mSigma{}  Kan-type(A)  Kan-type(B);I;alpha;J;x;i).
    (sigma-box-fst(bx)  \mmember{}  A-open-box(X;Kan-type(A);I;alpha;J;x;i))



Date html generated: 2017_10_05-AM-10_24_18
Last ObjectModification: 2017_07_28-AM-11_22_19

Theory : cubical!sets


Home Index