Nuprl Lemma : csm-adjoin-fst-snd
∀[Gamma,Delta:CubicalSet]. ∀[A:{Gamma ⊢ _}].  ((p;q) = 1(Gamma.A) ∈ Gamma.A ⟶ Gamma.A)
Proof
Definitions occuring in Statement : 
csm-adjoin: (s;u)
, 
cc-snd: q
, 
cc-fst: p
, 
cube-context-adjoin: X.A
, 
cubical-type: {X ⊢ _}
, 
csm-id: 1(X)
, 
cube-set-map: A ⟶ B
, 
cubical-set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
cubical-type: {X ⊢ _}
, 
cc-snd: q
, 
cc-fst: p
, 
csm-adjoin: (s;u)
, 
cube-context-adjoin: X.A
, 
csm-id: 1(X)
, 
I-cube: X(I)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
csm-ap: (s)x
, 
functor-ob: ob(F)
, 
type-cat: TypeCat
, 
identity-trans: identity-trans(C;D;F)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
cubical-type-at: A(a)
Lemmas referenced : 
cubical-type_wf, 
cubical-set_wf, 
cube-context-adjoin_wf, 
csm-id_wf, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
cube-set-map-subtype, 
csm-equal, 
ob_pair_lemma, 
cat_id_tuple_lemma, 
ap_mk_nat_trans_lemma, 
I-cube_wf, 
cubical-type-at_wf, 
list_wf, 
coordinate_name_wf, 
name-morph_wf, 
cube-set-restriction_wf, 
all_wf, 
equal_wf, 
id-morph_wf, 
subtype_rel-equal, 
squash_wf, 
true_wf, 
cube-set-restriction-id, 
iff_weakening_equal, 
name-comp_wf, 
cube-set-restriction-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
equalitySymmetry, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
applyEquality, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
functionExtensionality, 
productEquality, 
dependent_set_memberEquality, 
dependent_pairEquality, 
functionEquality, 
lambdaEquality, 
instantiate, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[Gamma,Delta:CubicalSet].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].    ((p;q)  =  1(Gamma.A))
Date html generated:
2017_10_05-AM-10_13_43
Last ObjectModification:
2017_07_28-AM-11_19_04
Theory : cubical!sets
Home
Index