Nuprl Lemma : csm-ap-cubical-pair

[X,Delta:CubicalSet]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[u:{X ⊢ _:A}]. ∀[v:{X ⊢ _:(B)[u]}]. ∀[s:Delta ⟶ X].
  ((cubical-pair(u;v))s cubical-pair((u)s;(v)s) ∈ {Delta ⊢ _:(Σ B)s})


Proof




Definitions occuring in Statement :  cubical-pair: cubical-pair(u;v) cubical-sigma: Σ B csm-id-adjoin: [u] cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:AF} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube-set-map: A ⟶ B cubical-set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T csm-id-adjoin: [u] csm-id: 1(X) uimplies: supposing a cubical-type: {X ⊢ _} cubical-term: {X ⊢ _:AF} cube-set-map: A ⟶ B nat-trans: nat-trans(C;D;F;G) csm-ap-term: (t)s cubical-pair: cubical-pair(u;v) csm-ap-type: (AF)s cubical-sigma: Σ B pi1: fst(t) csm-ap: (s)x cubical-set: CubicalSet functor-arrow: arrow(F) functor-ob: ob(F) type-cat: TypeCat cat-comp: cat-comp(C) cat-arrow: cat-arrow(C) name-cat: NameCat cat-ob: cat-ob(C) pi2: snd(t) I-cube: X(I) cubical-type-at: A(a) all: x:A. B[x] top: Top implies:  Q prop: and: P ∧ Q subtype_rel: A ⊆B csm-adjoin: (s;u) cc-adjoin-cube: (v;u) cat-id: cat-id(C) cube-context-adjoin: X.A
Lemmas referenced :  cubical-term-equal csm-ap-type_wf cubical-sigma_wf csm-ap-term_wf cubical-pair_wf cube-set-map_wf cubical-term_wf cube-context-adjoin_wf csm-id-adjoin_wf cubical-type_wf cubical-set_wf ob_pair_lemma list_wf coordinate_name_wf I-cube_wf equal_wf ident_trans_ap_lemma subtype_rel_self cubical-type-at_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_isectElimination sqequalRule isect_memberEquality axiomEquality because_Cache setElimination rename productElimination dependent_functionElimination voidElimination voidEquality lambdaEquality applyEquality functionExtensionality lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination dependent_pairEquality

Latex:
\mforall{}[X,Delta:CubicalSet].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[u:\{X  \mvdash{}  \_:A\}].  \mforall{}[v:\{X  \mvdash{}  \_:(B)[u]\}].
\mforall{}[s:Delta  {}\mrightarrow{}  X].
    ((cubical-pair(u;v))s  =  cubical-pair((u)s;(v)s))



Date html generated: 2017_10_05-AM-10_16_39
Last ObjectModification: 2017_07_28-AM-11_19_56

Theory : cubical!sets


Home Index