Nuprl Lemma : csm-ap-type_wf1

[Gamma,Delta:j⊢]. ∀[A:{Gamma ⊢_}]. ∀[s:Delta j⟶ Gamma].  Delta ⊢(A)s


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-type: {X ⊢ _} csm-ap-type: (AF)s subtype_rel: A ⊆B and: P ∧ Q uimplies: supposing a squash: T prop: all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q cand: c∧ B
Lemmas referenced :  csm-ap_wf I_cube_wf fset_wf nat_wf subtype_rel-equal cube-set-restriction_wf equal_wf squash_wf true_wf istype-universe csm-ap-restriction subtype_rel_self iff_weakening_equal names-hom_wf nh-comp_wf cube-set-restriction-comp cube_set_map_wf nh-id_wf cube-set-restriction-id cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule dependent_set_memberEquality_alt dependent_pairEquality_alt functionExtensionality applyEquality hypothesisEquality extract_by_obid isectElimination hypothesis instantiate independent_isectElimination lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination because_Cache functionIsType lambdaFormation_alt independent_pairFormation inhabitedIsType productIsType equalityIstype axiomEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}j  \_\}].  \mforall{}[s:Delta  j{}\mrightarrow{}  Gamma].    Delta  \mvdash{}j  (A)s



Date html generated: 2020_05_20-PM-01_48_59
Last ObjectModification: 2020_04_03-PM-08_26_41

Theory : cubical!type!theory


Home Index