Nuprl Lemma : discrete-map-is-constant2

[T:Type]. ∀[I:fset(ℕ)]. ∀[phi:𝔽(I)]. ∀[s:I,phi ⟶ discrete-cube(T)]. ∀[f:{f:I ⟶ I| (phi f) 1} ].
  J,g. (s f)) ∈ I,phi ⟶ discrete-cube(T) 
  supposing ∀[J:fset(ℕ)]. ∀[g:J ⟶ I].  ((phi g)  (g f ⋅ g ∈ J ⟶ I))


Proof




Definitions occuring in Statement :  cubical-subset: I,psi name-morph-satisfies: (psi f) 1 face-presheaf: 𝔽 cube_set_map: A ⟶ B discrete-cube: discrete-cube(A) I_cube: A(I) nh-comp: g ⋅ f names-hom: I ⟶ J fset: fset(T) nat: uimplies: supposing a uall: [x:A]. B[x] implies:  Q set: {x:A| B[x]}  apply: a lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a cube_set_map: A ⟶ B cube-cat: CubeCat psc_map: A ⟶ B type-cat: TypeCat op-cat: op-cat(C) nat-trans: nat-trans(C;D;F;G) spreadn: spread4 all: x:A. B[x] member: t ∈ T functor-arrow: arrow(F) functor-ob: ob(F) cubical-subset: I,psi discrete-cube: discrete-cube(A) pi1: fst(t) pi2: snd(t) rep-sub-sheaf: rep-sub-sheaf(C;X;P) cat-comp: cat-comp(C) compose: g cat-arrow: cat-arrow(C) implies:  Q subtype_rel: A ⊆B I_cube: A(I) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt prop: bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] and: P ∧ Q so_apply: x[s] squash: T true: True guard: {T}
Lemmas referenced :  cat_arrow_triple_lemma cat_comp_tuple_lemma cat_ob_pair_lemma names-hom_wf name-morph-satisfies_wf subtype_rel_self lattice-point_wf face_lattice_wf nh-comp_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf cube_set_map_wf cubical-subset_wf discrete-cube_wf I_cube_wf face-presheaf_wf2 fset_wf nat_wf istype-universe squash_wf true_wf implies-nh-comp-satisfies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt sqequalHypSubstitution sqequalRule cut introduction extract_by_obid dependent_functionElimination thin Error :memTop,  hypothesis setElimination rename dependent_set_memberEquality_alt isectIsType because_Cache universeIsType isectElimination hypothesisEquality functionIsType applyEquality equalityIstype setIsType instantiate lambdaEquality_alt productEquality cumulativity isectEquality independent_isectElimination universeEquality functionExtensionality applyLambdaEquality equalitySymmetry hyp_replacement imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed setEquality independent_functionElimination lambdaFormation_alt inhabitedIsType

Latex:
\mforall{}[T:Type].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[phi:\mBbbF{}(I)].  \mforall{}[s:I,phi  {}\mrightarrow{}  discrete-cube(T)].  \mforall{}[f:\{f:I  {}\mrightarrow{}  I|  (phi  f)  =  1\}  ].
    s  =  (\mlambda{}J,g.  (s  I  f))  supposing  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[g:J  {}\mrightarrow{}  I].    ((phi  g)  =  1  {}\mRightarrow{}  (g  =  f  \mcdot{}  g))



Date html generated: 2020_05_20-PM-02_32_05
Last ObjectModification: 2020_04_04-AM-09_47_48

Theory : cubical!type!theory


Home Index