Nuprl Lemma : discrete-pair-inv_wf

[A:Type]. ∀[B:A ⟶ Type]. ∀[X:j⊢]. ∀[b:{X ⊢ _:discr(a:A × B[a])}].
  (discrete-pair-inv(X;b) ∈ {X ⊢ _:Σ discr(A) discrete-family(A;a.B[a])})


Proof




Definitions occuring in Statement :  discrete-pair-inv: discrete-pair-inv(X;b) discrete-family: discrete-family(A;a.B[a]) discrete-cubical-type: discr(T) cubical-sigma: Σ B cubical-term: {X ⊢ _:A} cubical_set: CubicalSet uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} discrete-cubical-type: discr(T) all: x:A. B[x] cubical-term-at: u(a) implies:  Q pi1: fst(t) squash: T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q discrete-pair-inv: discrete-pair-inv(X;b) discrete-family: discrete-family(A;a.B[a]) csm-id-adjoin: [u] csm-ap-type: (AF)s csm-adjoin: (s;u) csm-ap: (s)x pi2: snd(t)
Lemmas referenced :  cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma I_cube_wf fset_wf nat_wf equal_wf squash_wf true_wf pi1_wf_top istype-top subtype_rel_product top_wf subtype_rel_self iff_weakening_equal names-hom_wf istype-cubical-type-at cube-set-restriction_wf discrete-cubical-type_wf cubical-type-ap-morph_wf cubical-pair_wf discrete-family_wf cubical-term_wf cubical_set_wf istype-universe csm-ap-type_wf cube-context-adjoin_wf csm-id-adjoin_wf cubical-term-at_wf pi2_wf csm-ap-type-at discrete-cubical-term-at-morph subtype_rel-equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt sqequalRule introduction extract_by_obid dependent_functionElimination Error :memTop,  hypothesis lambdaEquality_alt applyEquality hypothesisEquality inhabitedIsType lambdaFormation_alt productElimination equalityIstype equalityTransitivity equalitySymmetry independent_functionElimination universeIsType isectElimination imageElimination because_Cache productIsType independent_isectElimination natural_numberEquality imageMemberEquality baseClosed instantiate functionIsType cumulativity productEquality universeEquality independent_pairFormation applyLambdaEquality

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[X:j\mvdash{}].  \mforall{}[b:\{X  \mvdash{}  \_:discr(a:A  \mtimes{}  B[a])\}].
    (discrete-pair-inv(X;b)  \mmember{}  \{X  \mvdash{}  \_:\mSigma{}  discr(A)  discrete-family(A;a.B[a])\})



Date html generated: 2020_05_20-PM-03_40_46
Last ObjectModification: 2020_04_07-PM-04_29_55

Theory : cubical!type!theory


Home Index