Nuprl Lemma : fl-morph-fl1-is-1

[J,I:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[x:names(I)].  uiff(((x=1))<f> 1 ∈ Point(face_lattice(J));(f x) 1 ∈ Point(dM(J)))


Proof




Definitions occuring in Statement :  fl-morph: <f> fl1: (x=1) face_lattice: face_lattice(I) names-hom: I ⟶ J dM1: 1 dM: dM(I) names: names(I) lattice-1: 1 lattice-point: Point(l) fset: fset(T) nat: uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T squash: T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q implies:  Q bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) rev_implies:  Q names-hom: I ⟶ J bdd-distributive-lattice: BoundedDistributiveLattice so_lambda: λ2x.t[x] so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra dM1: 1
Lemmas referenced :  equal_wf squash_wf true_wf lattice-point_wf face_lattice_wf fl-morph-fl1 lattice-1_wf iff_weakening_equal fl-morph_wf bounded-lattice-hom_wf fl1_wf dM_wf dM1_wf uiff_wf dM-to-FL_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf bdd-distributive-lattice_wf DeMorgan-algebra-structure_wf DeMorgan-algebra-structure-subtype subtype_rel_transitivity DeMorgan-algebra-axioms_wf names_wf names-hom_wf fset_wf nat_wf iff_weakening_uiff dM-to-FL-eq-1
Rules used in proof :  cut addLevel sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity productElimination thin independent_pairFormation isect_memberFormation independent_isectElimination applyEquality lambdaEquality imageElimination introduction extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality because_Cache sqequalRule natural_numberEquality imageMemberEquality baseClosed independent_functionElimination cumulativity setElimination rename instantiate productEquality independent_pairEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[J,I:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[x:names(I)].    uiff(((x=1))<f>  =  1;(f  x)  =  1)



Date html generated: 2017_10_05-AM-01_13_55
Last ObjectModification: 2017_07_28-AM-09_31_15

Theory : cubical!type!theory


Home Index