Nuprl Lemma : s-comp-0-e'

[I:fset(ℕ)]. ∀[i:ℕ]. ∀[J:fset(ℕ)]. ∀[f:J ⟶ I]. ∀[j:{j:ℕ| ¬j ∈ I} ]. ∀[k:{j:ℕ| ¬j ∈ J} ].
  (s ⋅ (i0) ⋅ f,j=k (i0) ⋅ f ⋅ s ∈ J+k ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-0: (i0) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] squash: T true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q all: x:A. B[x]
Lemmas referenced :  set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self names-hom_wf add-name_wf nc-e'_wf nc-0_wf squash_wf true_wf equal_wf add-name-com iff_weakening_equal nc-s_wf f-subset-add-name nh-comp_wf nh-comp-assoc nc-0-s-commute nc-e'-lemma3
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut setElimination thin rename hypothesis extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality applyEquality intEquality independent_isectElimination because_Cache natural_numberEquality hypothesisEquality isect_memberEquality axiomEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed universeEquality productElimination independent_functionElimination hyp_replacement dependent_functionElimination dependent_set_memberEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\mBbbN{}].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].  \mforall{}[j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  ].  \mforall{}[k:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  J\}  ].
    (s  \mcdot{}  (i0)  \mcdot{}  f,j=k  =  (i0)  \mcdot{}  f  \mcdot{}  s)



Date html generated: 2017_10_05-AM-01_07_08
Last ObjectModification: 2017_07_28-AM-09_28_14

Theory : cubical!type!theory


Home Index