Nuprl Lemma : sq_stable__composition-uniformity

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[comp:I:fset(ℕ)
                                      ⟶ i:{i:ℕ| ¬i ∈ I} 
                                      ⟶ rho:Gamma(I+i)
                                      ⟶ phi:𝔽(I)
                                      ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
                                      ⟶ cubical-path-0(Gamma;A;I;i;rho;phi;u)
                                      ⟶ cubical-path-1(Gamma;A;I;i;rho;phi;u)].
  SqStable(composition-uniformity(Gamma;A;comp))


Proof




Definitions occuring in Statement :  composition-uniformity: composition-uniformity(Gamma;A;comp) cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: sq_stable: SqStable(P) uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q composition-uniformity: composition-uniformity(Gamma;A;comp) all: x:A. B[x] squash: T subtype_rel: A ⊆B uimplies: supposing a nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  cubical-path-0_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical-type-cumulativity csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le names-hom_wf fset-member_wf nat_wf int-deq_wf istype-void istype-nat squash_wf composition-uniformity_wf fset_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self cubical-path-1_wf cubical-type_wf cubical_set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution imageElimination hypothesis dependent_functionElimination thin hypothesisEquality universeIsType instantiate extract_by_obid isectElimination applyEquality because_Cache sqequalRule setElimination rename independent_isectElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType axiomEquality functionIsTypeImplies inhabitedIsType intEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[comp:I:fset(\mBbbN{})
                                                                            {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
                                                                            {}\mrightarrow{}  rho:Gamma(I+i)
                                                                            {}\mrightarrow{}  phi:\mBbbF{}(I)
                                                                            {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
                                                                            {}\mrightarrow{}  cubical-path-0(Gamma;A;I;i;rho;phi;u)
                                                                            {}\mrightarrow{}  cubical-path-1(Gamma;A;I;i;rho;phi;u)].
    SqStable(composition-uniformity(Gamma;A;comp))



Date html generated: 2020_05_20-PM-03_49_08
Last ObjectModification: 2020_04_09-AM-11_17_50

Theory : cubical!type!theory


Home Index