Nuprl Lemma : eu-seg-length-extend

[e:EuclideanPlane]. ∀[s:ProperSegment]. ∀[t:Segment].  (|s t| |s| |t| ∈ {p:Point| O_X_p} )


Proof




Definitions occuring in Statement :  eu-add-length: q eu-length: |s| eu-seg-extend: t eu-proper-segment: ProperSegment eu-segment: Segment euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-X: X eu-O: O eu-point: Point uall: [x:A]. B[x] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T eu-proper-segment: ProperSegment eu-seg-proper: proper(s) eu-segment: Segment eu-seg-extend: t eu-seg2: s.2 eu-seg1: s.1 pi1: fst(t) pi2: snd(t) eu-mk-seg: ab all: x:A. B[x] top: Top euclidean-plane: EuclideanPlane prop: implies:  Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q)
Lemmas referenced :  eu_seg1_mk_seg_lemma eu_seg2_mk_seg_lemma eu-segment_wf eu-proper-segment_wf euclidean-plane_wf eu-extend-property not_wf equal_wf eu-point_wf eu-extend_wf eu-add-length-between eu-congruent-iff-length and_wf eu-between-eq_wf eu-O_wf eu-X_wf eu-add-length_wf eu-length_wf eu-mk-seg_wf eu-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename productElimination sqequalRule lemma_by_obid dependent_functionElimination isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality axiomEquality because_Cache dependent_set_memberEquality lambdaFormation independent_isectElimination equalitySymmetry independent_pairFormation equalityTransitivity setEquality applyEquality lambdaEquality equalityEquality independent_functionElimination

Latex:
\mforall{}[e:EuclideanPlane].  \mforall{}[s:ProperSegment].  \mforall{}[t:Segment].    (|s  +  t|  =  |s|  +  |t|)



Date html generated: 2016_05_18-AM-06_38_41
Last ObjectModification: 2015_12_28-AM-09_23_51

Theory : euclidean!geometry


Home Index