Nuprl Lemma : test-colinear-sets

e:EuclideanPlane. ∀A,B,C,X,Y,Z,W,U,V:Point.
  (Colinear(A;B;X)  A_B_C  Y_C_A  (Y C ∈ Point))  Colinear(C;Y;X))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane eu-between-eq: a_b_c eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane exists: x:A. B[x] and: P ∧ Q cand: c∧ B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q guard: {T} or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] eu-colinear-set: eu-colinear-set(e;L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m
Lemmas referenced :  equal_wf eu-point_wf eu-colinear-append cons_wf nil_wf eu-between-eq_wf eu-between-eq-same eu-colinear-def cons_member l_member_wf not_wf exists_wf eu-colinear-is-colinear-set eu-between-eq-implies-colinear list_ind_cons_lemma list_ind_nil_lemma length_of_cons_lemma length_of_nil_lemma false_wf lelt_wf eu-colinear_wf euclidean-plane_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis sqequalHypSubstitution independent_functionElimination thin equalitySymmetry voidElimination introduction extract_by_obid isectElimination setElimination rename hypothesisEquality dependent_functionElimination because_Cache dependent_pairFormation hyp_replacement Error :applyLambdaEquality,  sqequalRule independent_isectElimination productElimination independent_pairFormation inrFormation inlFormation productEquality lambdaEquality isect_memberEquality voidEquality dependent_set_memberEquality natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C,X,Y,Z,W,U,V:Point.
    (Colinear(A;B;X)  {}\mRightarrow{}  A\_B\_C  {}\mRightarrow{}  Y\_C\_A  {}\mRightarrow{}  (\mneg{}(Y  =  C))  {}\mRightarrow{}  Colinear(C;Y;X))



Date html generated: 2016_10_26-AM-07_44_10
Last ObjectModification: 2016_07_12-AM-08_11_36

Theory : euclidean!geometry


Home Index