Nuprl Lemma : canonical-parallel2

e:EuclideanParPlane. ∀c:l,m:Line//l || m. ∀a:Point.  (∃l:{l:LINE| l}  [(l c ∈ (l,m:Line//l || m))])


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-incident: L geoline: LINE geo-line: Line geo-point: Point quotient: x,y:A//B[x; y] all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2y.t[x; y] euclidean-parallel-plane: EuclideanParPlane so_apply: x[s1;s2] exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q cand: c∧ B implies:  Q prop: quotient: x,y:A//B[x; y] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t geoline: LINE sq_stable: SqStable(P) squash: T
Lemmas referenced :  geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype euclidean-planes-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf quotient_wf geo-line_wf geo-Aparallel_wf geo-Aparallel-equiv Euclid-parallel-exists geo-Aparallel_inversion geoline-subtype1 geo-incident_wf geoline_wf subtype_rel_self sq_exists_wf geo-playfair-axiom geo-Aparallel_transitivity geo-Aparallel_weakening2 quotient-member-eq geo-line-eq_wf geo-line-eq-equiv sq_stable__geo-Aparallel subtype_rel_set geoline-subtype2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut universeIsType introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis instantiate independent_isectElimination sqequalRule dependent_functionElimination because_Cache lambdaEquality_alt setElimination rename inhabitedIsType productElimination dependent_set_memberEquality_alt independent_functionElimination independent_pairFormation productIsType pointwiseFunctionalityForEquality setEquality pertypeElimination equalityIsType4 equalityTransitivity equalitySymmetry functionExtensionality functionEquality productEquality equalityIsType1 imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}c:l,m:Line//l  ||  m.  \mforall{}a:Point.    (\mexists{}l:\{l:LINE|  a  I  l\}    [(l  =  c)])



Date html generated: 2019_10_16-PM-03_05_13
Last ObjectModification: 2018_11_08-PM-01_16_20

Theory : euclidean!plane!geometry


Home Index