Nuprl Lemma : canonical-parallel2
∀e:EuclideanParPlane. ∀c:l,m:Line//l || m. ∀a:Point.  (∃l:{l:LINE| a I l}  [(l = c ∈ (l,m:Line//l || m))])
Proof
Definitions occuring in Statement : 
euclidean-parallel-plane: EuclideanParPlane
, 
geo-Aparallel: l || m
, 
geo-incident: p I L
, 
geoline: LINE
, 
geo-line: Line
, 
geo-point: Point
, 
quotient: x,y:A//B[x; y]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
euclidean-parallel-plane: EuclideanParPlane
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
quotient: x,y:A//B[x; y]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
geoline: LINE
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
euclidean-planes-subtype, 
subtype_rel_transitivity, 
euclidean-parallel-plane_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
quotient_wf, 
geo-line_wf, 
geo-Aparallel_wf, 
geo-Aparallel-equiv, 
Euclid-parallel-exists, 
geo-Aparallel_inversion, 
geoline-subtype1, 
geo-incident_wf, 
geoline_wf, 
subtype_rel_self, 
sq_exists_wf, 
geo-playfair-axiom, 
geo-Aparallel_transitivity, 
geo-Aparallel_weakening2, 
quotient-member-eq, 
geo-line-eq_wf, 
geo-line-eq-equiv, 
sq_stable__geo-Aparallel, 
subtype_rel_set, 
geoline-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
lambdaEquality_alt, 
setElimination, 
rename, 
inhabitedIsType, 
productElimination, 
dependent_set_memberEquality_alt, 
independent_functionElimination, 
independent_pairFormation, 
productIsType, 
pointwiseFunctionalityForEquality, 
setEquality, 
pertypeElimination, 
equalityIsType4, 
equalityTransitivity, 
equalitySymmetry, 
functionExtensionality, 
functionEquality, 
productEquality, 
equalityIsType1, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}e:EuclideanParPlane.  \mforall{}c:l,m:Line//l  ||  m.  \mforall{}a:Point.    (\mexists{}l:\{l:LINE|  a  I  l\}    [(l  =  c)])
Date html generated:
2019_10_16-PM-03_05_13
Last ObjectModification:
2018_11_08-PM-01_16_20
Theory : euclidean!plane!geometry
Home
Index