Nuprl Lemma : Euclid-parallel-exists
∀e:EuclideanPlane. ∀l:Line. ∀p:Point.  ∃m:Line. (m || l ∧ p I m)
Proof
Definitions occuring in Statement : 
geo-Aparallel: l || m
, 
geo-incident: p I L
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
geo-line: Line
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
guard: {T}
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
geo-Aparallel: l || m
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
, 
stable: Stable{P}
, 
geo-eq: a ≡ b
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
geoline: LINE
, 
quotient: x,y:A//B[x; y]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
geo-perp-in: ab  ⊥x cd
, 
oriented-plane: OrientedPlane
, 
rev_implies: P 
⇐ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
true: True
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
Euclid-drop-perp-0, 
geo-sep_wf, 
Euclid-erect-perp, 
geo-colinear-same, 
geo-colinear_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-line_wf, 
geo-perp-in_wf, 
geo-lsep_wf, 
sq_stable__and, 
sq_stable__colinear, 
sq_stable__geo-perp-in, 
sq_stable__geo-lsep, 
sq_stable__geo-sep, 
geo-sep-sym, 
lsep-implies-sep, 
geo-Aparallel_wf, 
geoline-subtype1, 
geo-incident_wf, 
geo-intersect_wf, 
stable__false, 
false_wf, 
not_wf, 
istype-void, 
minimal-double-negation-hyp-elim, 
geo-perp-in_functionality, 
geo-eq_weakening, 
geo-colinear_functionality, 
minimal-not-not-excluded-middle, 
geo-intersect-iff3, 
geo-line-eq-to-col, 
geo-line-eq_wf, 
right-angles-not-complementary, 
oriented-colinear-append, 
cons_wf, 
nil_wf, 
cons_member, 
l_member_wf, 
geo-colinear-is-colinear-set, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
geo-strict-between-implies-colinear, 
length_of_cons_lemma, 
length_of_nil_lemma, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
right-angle-symmetry, 
adjacent-right-angles, 
euclidean-plane-axioms, 
quotient-member-eq, 
geo-line-eq-equiv, 
geo-colinear-line-eq2, 
geo-intersect-irreflexive, 
squash_wf, 
true_wf, 
geoline_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-incident-line
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
hypothesis, 
universeIsType, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
rename, 
setElimination, 
instantiate, 
independent_isectElimination, 
isect_memberEquality_alt, 
productEquality, 
independent_pairFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_pairFormation_alt, 
dependent_pairEquality_alt, 
productIsType, 
inhabitedIsType, 
unionEquality, 
functionEquality, 
functionIsType, 
unionIsType, 
unionElimination, 
voidElimination, 
promote_hyp, 
pertypeElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
inrFormation_alt, 
inlFormation_alt, 
natural_numberEquality, 
approximateComputation, 
lambdaEquality_alt, 
universeEquality, 
independent_pairEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}l:Line.  \mforall{}p:Point.    \mexists{}m:Line.  (m  ||  l  \mwedge{}  p  I  m)
Date html generated:
2019_10_16-PM-02_42_13
Last ObjectModification:
2018_12_15-PM-09_45_47
Theory : euclidean!plane!geometry
Home
Index