Nuprl Lemma : geo-triangle-same-line

e:HeytingGeometry. ∀x,a:Point. ∀b:{b:Point| a ≠ b} . ∀c:Point. ∀d:{d:Point| c ≠ d} .
  (line(a;b)=line(c;d)  {x ab ⇐⇒ cd})


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-same-line: line(a;b)=line(c;d) geo-sep: a ≠ b geo-point: Point guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] prop: squash: T and: P ∧ Q geo-same-line: line(a;b)=line(c;d) sq_stable: SqStable(P) heyting-geometry: Error :heyting-geometry,  implies:  Q or: P ∨ Q so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs rev_implies:  Q iff: ⇐⇒ Q exists: x:A. B[x] subtract: m cons: [a b] select: L[n] true: True less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B
Lemmas referenced :  Error :heyting-geometry_wf,  geo-sep_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-point_wf set_wf heyting-geometry-subtype geo-same-line_wf Error :geo-triangle_wf,  Error :sq_stable__geo-triangle,  geo-sep-or list_ind_nil_lemma list_ind_cons_lemma exists_wf equal_wf l_member_wf cons_member nil_wf cons_wf geo-colinear-append lelt_wf false_wf length_of_nil_lemma length_of_cons_lemma geo-colinear-is-colinear-set geo-sep-sym geo-triangle-colinear geo-triangle-symmetry geo-same-line-symmetry
Rules used in proof :  hypothesis extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution because_Cache lambdaEquality independent_isectElimination instantiate applyEquality isectElimination imageElimination baseClosed imageMemberEquality sqequalRule productElimination independent_functionElimination hypothesisEquality dependent_functionElimination sqequalHypSubstitution rename thin setElimination unionElimination dependent_set_memberEquality productEquality inrFormation inlFormation dependent_pairFormation independent_pairFormation natural_numberEquality voidEquality voidElimination isect_memberEquality

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}x,a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .  \mforall{}c:Point.  \mforall{}d:\{d:Point|  c  \mneq{}  d\}  .
    (line(a;b)=line(c;d)  {}\mRightarrow{}  \{x  \#  ab  \mLeftarrow{}{}\mRightarrow{}  x  \#  cd\})



Date html generated: 2017_10_02-PM-07_03_11
Last ObjectModification: 2017_08_08-PM-00_39_42

Theory : euclidean!plane!geometry


Home Index