Nuprl Lemma : opp-side_half-plane-angle-congruence-lemma
∀e:EuclideanPlane. ∀b,p,b',p',a,c,a',c',d:Point.
  ((a leftof bp ∧ c leftof pb)
  
⇒ (a' leftof b'p' ∧ c' leftof p'b')
  
⇒ ((abp ≅a a'b'p' ∧ pbc ≅a p'b'c') ∧ (a-d-c ∧ out(b dp)) ∧ b ≠ d)
  
⇒ (∃a'',c'',d'':Point
       ((ba ≅ b'a'' ∧ (bc ≅ b'c'' ∧ bd ≅ b'd'') ∧ ad ≅ a''d'' ∧ dc ≅ d''c'' ∧ out(b' d''p')) ∧ a''_d''_c'')))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
geo-cong-angle: abc ≅a xyz
, 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-left: a leftof bc
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
geo-strict-between: a-b-c
, 
iff: P 
⇐⇒ Q
, 
basic-geometry-: BasicGeometry-
, 
oriented-plane: OrientedPlane
Lemmas referenced : 
geo-cong-angle_wf, 
geo-strict-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-out_wf, 
geo-sep_wf, 
geo-left_wf, 
geo-point_wf, 
left-implies-sep, 
geo-proper-extend-exists, 
geo-sep-sym, 
geo-strict-between-sep3, 
geo-congruent-iff-length, 
geo-congruent_wf, 
exists_wf, 
geo-out-iff-between1, 
geo-between-symmetry, 
euclidean-plane-axioms, 
geo-strict-between-implies-between, 
geo-out_inversion, 
geo-between_wf, 
geo-out_weakening, 
geo-eq_weakening, 
geo-sas2, 
out-preserves-angle-cong_1, 
geo-congruent-symmetry, 
geo-congruent-sep, 
geo-strict-between-sep2, 
geo-five-segment, 
geo-congruent-comm, 
Euclid-Prop7, 
left-between-implies-right1, 
geo-left-out, 
geo-left-out-2, 
geo-left-out-1, 
geo-left-out-3, 
geo-congruent_functionality, 
geo-sep_functionality, 
geo-between_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
productEquality, 
introduction, 
extract_by_obid, 
isectElimination, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
rename, 
dependent_pairFormation, 
independent_pairFormation, 
equalitySymmetry, 
lambdaEquality, 
equalityTransitivity, 
dependent_set_memberEquality, 
promote_hyp
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}b,p,b',p',a,c,a',c',d:Point.
    ((a  leftof  bp  \mwedge{}  c  leftof  pb)
    {}\mRightarrow{}  (a'  leftof  b'p'  \mwedge{}  c'  leftof  p'b')
    {}\mRightarrow{}  ((abp  \mcong{}\msuba{}  a'b'p'  \mwedge{}  pbc  \mcong{}\msuba{}  p'b'c')  \mwedge{}  (a-d-c  \mwedge{}  out(b  dp))  \mwedge{}  b  \mneq{}  d)
    {}\mRightarrow{}  (\mexists{}a'',c'',d'':Point
              ((ba  \mcong{}  b'a''  \mwedge{}  (bc  \mcong{}  b'c''  \mwedge{}  bd  \mcong{}  b'd'')  \mwedge{}  ad  \mcong{}  a''d''  \mwedge{}  dc  \mcong{}  d''c''  \mwedge{}  out(b'  d''p'))
              \mwedge{}  a''\_d''\_c'')))
Date html generated:
2018_05_22-PM-00_20_03
Last ObjectModification:
2018_04_21-PM-10_36_54
Theory : euclidean!plane!geometry
Home
Index