Nuprl Lemma : rng-pp-nontriv1_wf

[r:IntegDom{i}]. ∀[eq:EqDecider(|r|)]. ∀[l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} ].
  (rng-pp-nontriv1(r;eq;l) ∈ ∃a,b,c:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
                              ((¬¬((a l) 0 ∈ |r|))
                              ∧ (¬¬((b l) 0 ∈ |r|))
                              ∧ (¬¬((c l) 0 ∈ |r|))
                              ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
                                  ((¬¬((a l) 0 ∈ |r|)) ∧ ((b l) 0 ∈ |r|))))
                              ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
                                  ((¬¬((b l) 0 ∈ |r|)) ∧ ((c l) 0 ∈ |r|))))
                              ∧ (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))} 
                                  ((¬¬((c l) 0 ∈ |r|)) ∧ ((a l) 0 ∈ |r|))))))


Proof




Definitions occuring in Statement :  rng-pp-nontriv1: rng-pp-nontriv1(r;eq;l) deq: EqDecider(T) int_seg: {i..j-} uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r| scalar-product: (a b) zero-vector: 0
Definitions unfolded in proof :  rng-pp-nontrivial-3-ext uimplies: supposing a exists: x:A. B[x] so_apply: x[s] implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: and: P ∧ Q prop: so_lambda: λ2x.t[x] rng: Rng crng: CRng integ_dom: IntegDom{i} all: x:A. B[x] subtype_rel: A ⊆B member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  set_wf subtype_rel_function rng_zero_wf le_wf false_wf scalar-product_wf exists_wf zero-vector_wf equal_wf not_wf int_seg_wf rng_car_wf deq_wf all_wf integ_dom_wf subtype_rel_self rng-pp-nontrivial-3-ext
Rules used in proof :  isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality independent_isectElimination universeEquality cumulativity independent_pairFormation dependent_set_memberEquality productEquality lambdaFormation hypothesisEquality functionExtensionality natural_numberEquality setEquality lambdaEquality because_Cache rename setElimination functionEquality isectElimination sqequalHypSubstitution sqequalRule hypothesis extract_by_obid instantiate thin applyEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:IntegDom\{i\}].  \mforall{}[eq:EqDecider(|r|)].  \mforall{}[l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  ].
    (rng-pp-nontriv1(r;eq;l)  \mmember{}  \mexists{}a,b,c:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                                                            ((\mneg{}\mneg{}((a  .  l)  =  0))
                                                            \mwedge{}  (\mneg{}\mneg{}((b  .  l)  =  0))
                                                            \mwedge{}  (\mneg{}\mneg{}((c  .  l)  =  0))
                                                            \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((a  .  l)  =  0))  \mwedge{}  (\mneg{}((b  .  l)  =  0)))\000C)
                                                            \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}  .  ((\mneg{}\mneg{}((b  .  l)  =  0))  \mwedge{}  (\mneg{}((c  .  l)  =  0)))\000C)
                                                            \mwedge{}  (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\} 
                                                                    ((\mneg{}\mneg{}((c  .  l)  =  0))  \mwedge{}  (\mneg{}((a  .  l)  =  0))))))



Date html generated: 2018_05_22-PM-00_54_28
Last ObjectModification: 2018_05_21-AM-01_25_38

Theory : euclidean!plane!geometry


Home Index